lim(n→∞)(n^3/(2n^2-1)-n^2/(2n+1)) 极限是1/4,怎么求N(ε)
1个回答
展开全部
原式=n²[n/(2n²-1)-1/(2n十1)]
= n²[n (2n十1) - (2n²-1) ]/ (2n²-1) (2n十1)
= n²(n十1) / (2n²-1) (2n十1)
= (n³十n²) / (4n³十2n²-2n-1)
(n³十n²) / (4n³十2n²-2n-1)<1/4十ε
(4n³十4n²) / (4n³十2n²-2n-1)<1十4ε
(4n³十4n²) / (4n³十2n²-2n-1)-
1<4ε
(2n²十2n十1) / (4n³十2n²-2n-1)<4ε
(2n²十2n十1) / (4n³十4n²)<4ε/(1十4 ε )
1/2n=(2n²十2n) / (4n³十4n²)< (2n²十2n十1) / (4n³十4n²)<4ε/(1十4 ε )
2n> (1十4 ε )/ 4 ε
n> (1十4 ε )/ 8ε=1/ 8ε十1/2
取N=[ 1/ 8ε十1/2 ]十1
= n²[n (2n十1) - (2n²-1) ]/ (2n²-1) (2n十1)
= n²(n十1) / (2n²-1) (2n十1)
= (n³十n²) / (4n³十2n²-2n-1)
(n³十n²) / (4n³十2n²-2n-1)<1/4十ε
(4n³十4n²) / (4n³十2n²-2n-1)<1十4ε
(4n³十4n²) / (4n³十2n²-2n-1)-
1<4ε
(2n²十2n十1) / (4n³十2n²-2n-1)<4ε
(2n²十2n十1) / (4n³十4n²)<4ε/(1十4 ε )
1/2n=(2n²十2n) / (4n³十4n²)< (2n²十2n十1) / (4n³十4n²)<4ε/(1十4 ε )
2n> (1十4 ε )/ 4 ε
n> (1十4 ε )/ 8ε=1/ 8ε十1/2
取N=[ 1/ 8ε十1/2 ]十1
追问
不是|x-a|的绝对值吗
追答
这里,都是大于1/4
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询