圆心决定了圆的什么,半径决定了圆的什么
圆心决定了圆的位置,半径决定了圆的大小。
在同一平面内,到定点的距离等于定长的点的集合叫做圆。圆可以表示为集合{M||MO|=r},其中O是圆心,r 是半径。圆的标准方程是(x - a) ² + (y - b) ² = r ²,其中点(a,b)是圆心,r是半径。
圆形是一种圆锥曲线,由平行于圆锥底面的平面截圆锥得到。
扩展资料
圆是轴对称图形,其对称轴是任意一条通过圆心的直线。圆也是中心对称图形,其对称中心是圆心。
垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的2条弧。
垂径定理的逆定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的2条弧。
有关圆周角和圆心角的性质和定理
① 在同圆或等圆中,如果两个圆心角,两个圆周角,两组弧,两条弦,两条弦心距中有一组量相等,那么他们所对应的其余各组量都分别相等。
②在同圆或等圆中,相等的弧所对的圆周角等于它所对的圆心角的一半(圆周角与圆心角在弦的同侧)。
圆心决定了圆的位置,半径决定了圆的大小。
在同一平面内,到定点的距离等于定长的点的集合叫做圆。圆可以表示为集合{M||MO|=r},其中O是圆心,r 是半径。圆的标准方程是(x - a) ² + (y - b) ² = r ²,其中点(a,b)是圆心,r是半径。
平面内,点P(x0,y0)与圆(x-a)²+(y-b)²=r²的位置关系判断一般方法是:
①如果(x0-a)²+(y0-b)²<r²,则P在圆内。
②如果(x0-a)²+(y0-b)²=r²,则P在圆上。
③如果(x0-a)²+(y0-b)²>r²,则P在圆外。
扩展资料:
圆的性质
1、有关外接圆和内切圆的性质和定理
①一个三角形有唯一确定的外接圆和内切圆。外接圆圆心是三角形各边垂直平分线的交点,到三角形三个顶点距离相等;
②内切圆的圆心是三角形各内角平分线的交点,到三角形三边距离相等。
③R=2S△÷L(R:内切圆半径,S:三角形面积,L:三角形周长)。
④两相切圆的连心线过切点。(连心线:两个圆心相连的直线)
⑤圆O中的弦PQ的中点M,过点M任作两弦AB,CD,弦AC与BD分别交PQ于X,Y,则M为XY之中点。
2、如果两圆相交,那么连接两圆圆心的线段(直线也可)垂直平分公共弦。
3、弦切角的度数等于它所夹的弧的度数的一半。
4、圆内角的度数等于这个角所对的弧的度数之和的一半。
5、圆外角的度数等于这个角所截两段弧的度数之差的一半。
6、周长相等,圆面积比正方形、长方形、三角形的面积大。
2016-12-02 · 知道合伙人教育行家
知道合伙人教育行家
向TA提问 私信TA
广告 您可能关注的内容 |