求曲线积分∫(x^2)ds,其中为球面x^2+y^2+z^2=a^2与平面x+y+z=0的交线
结果为:2πa³/3
解题过程如下:
解:
曲线投影到xOy面上
得到曲线x²+xy+y²=a²/2
配方(x+y/2)²+3/4y²=a²/2
令x+y/2=√2/2acost
√3/2y=√2/2asint
所以x=√2/2acost-√6/6asint
y=√6/3asint
z=-x-y=-√2/2acost-√6/6asint
t从0到2π
ds=√[x'²+y'²+z'²]dt=adt
所以,∫x²ds=∫(0到2π) (√2/2acost-√6/6asint)²adt=2πa³/3
扩展资料
求函数积分的方法:
如果一个函数f在某个区间上黎曼可积,并且在此区间上大于等于零。那么它在这个区间上的积分也大于等于零。如果f勒贝格可积并且几乎总是大于等于零,那么它的勒贝格积分也大于等于零。
作为推论,如果两个 上的可积函数f和g相比,f(几乎)总是小于等于g,那么f的(勒贝格)积分也小于等于g的(勒贝格)积分。
函数的积分表示了函数在某个区域上的整体性质,改变函数某点的取值不会改变它的积分值。对于黎曼可积的函数,改变有限个点的取值,其积分不变。
对于勒贝格可积的函数,某个测度为0的集合上的函数值改变,不会影响它的积分值。如果两个函数几乎处处相同,那么它们的积分相同。如果对 中任意元素A,可积函数f在A上的积分总等于(大于等于)可积函数g在A上的积分,那么f几乎处处等于(大于等于)g。
如果在闭区间[a,b]上,无论怎样进行取样分割,只要它的子区间长度最大值足够小,函数f的黎曼和都会趋向于一个确定的值S,那么f在闭区间[a,b]上的黎曼积分存在,并且定义为黎曼和的极限S。
所以∫x²ds=1/3∫(x²+y²+z²)ds=1/3∫a²ds=1/3×a²×2πa=2πa³/3。
解法二:曲线投影到xOy面上,得到曲线x²+xy+y²=a²/2,配方(x+y/2)²+3/4y²=a²/2,令x+y/2=√2/2acost,√3/2y=√2/2asint,所以x=√2/2acost-√6/6asint,y=√6/3asint,z=-x-y=-√2/2acost-√6/6asint,t从0到2π。
ds=√[x'²+y'²+z'²]dt=adt。
所以,∫x²ds=∫(0到2π) (√2/2acost-√6/6asint)²adt=2πa³/3。