求解两道不定积分题(用第二换元法)
4个回答
展开全部
x=sint
∫dx/[x+√(1-x²)]
=∫dsint/[sint+√(1-sin²t)]
=∫cost/(sint+cost)dt
=1/2∫(sint+cost+cost-sint)/(sint+cost)dt
=1/2t+ln|sint+cost|+C
∫dx/[1+√(1-x²)]
=∫dsint/[1+√(1-sin²t)]
=∫cost/(1+cost)dt
=∫1-1/(1+cost)dt
=t-2∫1/cos²(t/2)dt
=t-4∫sec²(t/2)d(t/2)
=t-4tan(t/2)+C
∫dx/[x+√(1-x²)]
=∫dsint/[sint+√(1-sin²t)]
=∫cost/(sint+cost)dt
=1/2∫(sint+cost+cost-sint)/(sint+cost)dt
=1/2t+ln|sint+cost|+C
∫dx/[1+√(1-x²)]
=∫dsint/[1+√(1-sin²t)]
=∫cost/(1+cost)dt
=∫1-1/(1+cost)dt
=t-2∫1/cos²(t/2)dt
=t-4∫sec²(t/2)d(t/2)
=t-4tan(t/2)+C
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
x换成sinx
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询