弦长公式的推导和圆心到直线的距离公式的推导

 我来答
应平春M
2017-10-02 · TA获得超过342个赞
知道小有建树答主
回答量:427
采纳率:0%
帮助的人:148万
展开全部
假设直线为:Y=kx+b

圆的方程为:(x-a)^2+(y-u)^2=r^2

假设相交弦为AB,点A为(x1.y1)点B为(X2.Y2)

则有AB=√(x1-x2)^2+(y1-y2)^2

把y1=kx1+b.

y2=kx2+b分别带入,

则有:

AB=√(x1-x2)^2+(kx1-kx2)^2

=√(x1-x2)^2+k^2(x1-x2)^2

=√1+k^2*│x1-x2│

证明AB=│y1-y2│√[(1/k^2)+1]

的方法也是一样的

证明方法二

d=√(x1-x2}^2+(y1-y2)^2

这是两点间距离公式

因为直线

y=kx+b

所以y1-y2=kx1+b-(kx2+b)=k(x1-x2)

将其带入

d=√(x1-x2)^2+(y1-y2)^2

得到

d=√(x1-x2)^2+[k(x1-x2)]^2

=√(1+k^2)(x1-x2)^2

=√(1+k^2)*√(x1-x2)^2

=√(1+k^2)*√(x1+x2)^2-4x1x2
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式