一道数列求和的问题,很急!
展开全部
an
=1/[n(n+1)]
=1/n -1/(n+1)
Sn = a1+a2+...+an = 1- 1/(n+1)= n/(n+1)
let
S =1.2^0+2.2^1+...+n.2^(n-1) (1)
2S = 1.2^1+2.2^2+...+n.2^n (2)
(2)-(1)
S = n.2^n -(1+2+...+2^(n-1))
=n.2^n -(2^n -1)
=1 + (n-1).2^n
bn = 1/[n(n+1)] + n.2^(n-1)
Tn =b1+b2+...+bn
=n/(n+1) +1 + (n-1).2^n
=1/[n(n+1)]
=1/n -1/(n+1)
Sn = a1+a2+...+an = 1- 1/(n+1)= n/(n+1)
let
S =1.2^0+2.2^1+...+n.2^(n-1) (1)
2S = 1.2^1+2.2^2+...+n.2^n (2)
(2)-(1)
S = n.2^n -(1+2+...+2^(n-1))
=n.2^n -(2^n -1)
=1 + (n-1).2^n
bn = 1/[n(n+1)] + n.2^(n-1)
Tn =b1+b2+...+bn
=n/(n+1) +1 + (n-1).2^n
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2018-04-30
展开全部
前半部分用裂项法,后半部分用错位相减法
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询