根据函数极限的定义证明

根据函数极限的定义证明下式:... 根据函数极限的定义证明下式: 展开
 我来答
帐号已注销
2020-11-05 · TA获得超过77.1万个赞
知道小有建树答主
回答量:4168
采纳率:93%
帮助的人:167万
展开全部

使||,|证题的步骤基本为: 任意给定duε>0,要使|f(x)-A|0,使当0<|x-x0|<δ时,有|f(x)-A|0,要使|lnx-1|0,都能找到δ>0,使当0<|x-e|<δ时,有|f(x)-1|<ε . 即当x趋近于e时,函数f(x)有极限1 说明一下:

1、取0<|x-e|,是不需要考虑点x=e时的函数值,它可以存在也可不存在,可为A也可不为A。

2、用ε-δ语言证明函数的极限较难,通常对综合大学数学等少数专业才要求。

例如:

极限定义,就是ε-δ定bai义。对于任意小正du数ε,存在正数δ,只zhi要|x-x0|≤δ,都有|f(x)-A|≤ε,就说

x趋近于x0时,函数有极限A。

如果极限是±∞,极限定义要换一个说法:

对于任意大正数M,存在正数δ,只要|x-x0|≤δ,都有f(x)>+M,或者f(x)<-M,就说函数x趋近于x0时有极限+∞或-∞。

如果x趋近于无穷大,仿此换一种说法:

对于任意小正数ε,存在一个正数M,对于所有x>M或者x<-M,都有|f(x)-A|≤ε,就说

x趋近于+或-∞时,函数有极限A。

如果此时的极限也是无穷大:

对于任意大正数P,存在一个正数M,对于所有x>M或者x<-M,都有|(x)>P,或者f(x)<-P,,就说x趋近于+或-∞时,函数极限为+∞或-∞。

扩展资料:

在运用以上两条去求函数的极限时尤需注意以下关键之点。一是先要用单调有界定理证明收敛,然后再求极限值。二是应用夹挤定理的关键是找到极限值相同的函数 ,并且要满足极限是趋于同一方向 ,从而证明或求得函数 的极限值。

分母等于零时,就不能将趋向值直接代入分母,可以通过下面几个小方法解决:

第一:因式分解,通过约分使分母不会为零。

第二:若分母出现根号,可以配一个因子使根号去除。

第三:以上我所说的解法都是在趋向值是一个固定值的时候进行的,如果趋向于无穷,分子分母可以同时除以自变量的最高次方。(通常会用到这个定理:无穷大的倒数为无穷小

参考资料来源:百度百科-函数极限

1132592091
2018-04-17
知道答主
回答量:1
采纳率:100%
帮助的人:1.5万
展开全部

本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式