配凑法求函数解析式的具体题目和方法有哪些?

 我来答
霸王兴么么哒
推荐于2019-09-02 · TA获得超过1962个赞
知道小有建树答主
回答量:25
采纳率:96%
帮助的人:3715
展开全部
  • 有些求解析式的问题,可能求解会遇到困难。这时就要抓住题目本身的特点,根据条件,通过“凑”、“配”,让题目条件转化为容易求解的形式。我们通过几个例题来看具体操作过程,同学们要通过,模仿、练习从而掌握这种方法。
    先看例题:

  • 例:已知,求f(x)的解析式
    方法一:换元法

    方法二:配凑法
    将等式右边上下同时除以x2有:

    将用x替换,即可得到函数解析式,即

  • 整理:
    配凑法求函数解析式
    由已知条件可将F(x)改写成关于g(x)的表达式,然后以x替代g(x),便得f(x)的表达式
    已知复合函数f(g(x))的解析式,用换元法,t=g(x),x=h(t)

  • 要注意新元的取值范围

  • 再看一个练习,要注意换元法和配凑法的区别与联系
    练:设函数f(x)满足,则f(x)的解析式为()

    解:如果用换元法做这个题目

    发现,用换元法解x的时候很困难,但用凑配法就变得简单了

  • 注意:函数的定义域
    因为,当x=1时等号成立
    所以函数定义域为x≥2
    所以本题选D

  • 练:已知,求f(x).
    方法一:配凑法
    解:通过观察,复合函数内层为,则需要在等式右边也凑配出相同的形式
    注意取值范围:
    再将替换为x,可得:
    ,要注意自变量的取值范围
    方法二:换元法

  • 注意:配凑法的实质仍是换元(整体换元)

  • 总结:
    1.注意观察题目条件,合理配凑,使题目容易求解。
    2.注意配凑法与换元法的区别与联系,平时做题时要多思考

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式