二维连续型随机变量(X,Y)的联合概率密度为1/6π。
在数学中,连续型随机变量的概率密度函数(在不至于混淆时可以简称为密度函数)描述这个随机变量的输出值,在某个确定的取值点附近的可能性。
而随机变量的取值落在某个区域之内的概率则为概率密度函数在这个区域上的积分。当概率密度函数存在的时候,累积分布函数是概率密度函数的积分。
扩展资料:
由于随机变量X的取值 只取决于概率密度函数的积分,所以概率密度函数在个别点上的取值并不会影响随机变量的表现。
如果一个函数和X的概率密度函数取值不同的点只有有限个、可数无限个或者相对于整个实数轴来说测度为0(是一个零测集),那么这个函数也可以是X的概率密度函数。