∫(1/x)*√[(1+x)/x]

 我来答
potti1114
2017-12-02 · TA获得超过7044个赞
知道小有建树答主
回答量:900
采纳率:0%
帮助的人:92.1万
展开全部
换元,令顷仔大t=√(1+x)/x=√(1+1/x),则t²=1+1/x,故x=1/(t²-1)
故∫1/x√(1+x)/xdx
=∫(t²-1)td(1/(t²-1))
=-∫(t²-1)t*2t/(t²-1)²dt
=-2∫t²/(t²-1)dt
=-2∫(1+1/(t²-1))dt
=-2∫(1+1/(t+1)(t-1))dt
而裂项雀竖公式1/(t+1)(t-1)=(1/(t-1)-1/(t+1))/2
所以
-2∫(1+1/(t+1)(t-1))dt
=-2∫dt-∫1/(t-1)dt+∫1/(t+1)dt
=-2t-ln绝对值(t-1)+ln绝对值(t+1)+C
(C为常数)
再把t=√(1+x)/x代入即戚迹可.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式