(9)
let
u=x^2-t^2
du=-2t dt
t=0, u=x^2
t=x, u=0
∫(0->x) tf(x^2-t^2) dt
= -(1/2)∫(x^2->0) f(u) du
=(1/2)∫(0->x^2) f(t) dt
d/dx ∫(0->x) tf(x^2-t^2) dt
=d/dx [ (1/2)∫(0->x^2) f(t) dt ]
=(1/2)(2x)f(x^2)
=xf(x^2)
ans :A
(10)
F(x)= ∫(x->x+2π) e^(sint). sint dt
F'(x)
= e^[sin(x+2π)] .sin(x+2π) - e^(sinx) .sinx
=e^(sinx) .sinx - e^(sinx) .sinx
=0
=>F(x) =C
let
u= π -t
du = -dt
t=π, u=0
t=2π, u=π
F(0)
=∫(0->2π) e^(sint). sint dt
=∫(0->π) e^(sint). sint dt + ∫(π->2π) e^(sint). sint dt
=∫(0->π) e^(sint). sint dt - ∫(0->π) e^(-sinu). sinu du
=∫(0->π) e^(sint). sint dt - ∫(0->π) e^(-sint). sint dt
=∫(0->π) sint . [ e^(sint) - e^(-sint) ] dt
>0
=> C >0
ans : A 正常数