y=(sinx*cosx)/(1+sinx+cosx)的值域

 我来答
溥鹏举杜月
2020-04-01 · TA获得超过2.9万个赞
知道大有可为答主
回答量:1.1万
采纳率:27%
帮助的人:860万
展开全部
一楼的解法过繁,二楼的做法中少了t=-1,即sinx+cosx+1=0的情况。
我有一个简单而且正确的方法:
注意到:(1+sinx+cosx)(1-sinx-cosx)=1-(sinx+cosx)^2=-2sinxcosx
……①,所以:
(1)当1+sinx+cosx=0时容易知道sinx,cosx中有一个是0。此时(sinx*cosx)/(1+sinx+cosx)=0。
(2)当1+sinx+cosx≠0时,由①式(sinx*cosx)/(1+sinx+cosx)=-1/2*(1-sinx-cosx)=-1/2+(sinx+cosx)/2.
而由于sinx+cosx=√2*sin(x+π/4),所以-√2≤sinx+cosx≤√2.因此-(√2+1)/2≤-1/2+(sinx+cosx)/2≤(√2-1)/2。
综上所述,y=(sinx*cosx)/(1+sinx+cosx)的值域是[-(√2+1)/2,(√2-1)/2].
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式