函数幂与指数幂区别
2个回答
2020-12-05 · 知道合伙人人力资源行家
518姚峰峰
知道合伙人人力资源行家
向TA提问 私信TA
知道合伙人人力资源行家
采纳数:50865
获赞数:564242
大学班长,中共党员。一次性通过英语四六级及计算机二级,现任公司综合办主任。为百度金榜题名时团队团长。
向TA提问 私信TA
关注
展开全部
函数幂与指数幂区别:
1、自变量x的位置不同。
指数函数,自变量x在指数的位置上,y=a^x(a>0,a 不等于 1)。
幂函数,自变量 x 在底数的位置上,y=x^a(a 不等于 1). a 不等于 1,但可正可负,取不同的值,图像及性质是不一样的。
2、性质不同。
指数函数性质:
当 a>1 时,函数是递增函数,且 y>0;
当 0<a<1 时,函数是递减函数,且 y>0。
幂函数性质:
正值性质:
当a>0时,幂函数有下列性质:
a、图像都经过点(1,1)(0,0);
b、函数的图像在区间[0,+∞)上是增函数;
c、在第一象限内,a>1时,导数值逐渐增大;a=1时,导数为常数;0<a<1时,导数值逐渐减小,趋近于0(函数值递增);
负值性质:
当a<0时,幂函数有下列性质:
a、图像都通过点(1,1);
b、图像在区间(0,+∞)上是减函数;(内容补充:若为X-2,易得到其为偶函数。利用对称性,对称轴是y轴,可得其图像在区间(-∞,0)上单调递增。其余偶函数亦是如此)。
c、在第一象限内,有两条渐近线(即坐标轴),自变量趋近0,函数值趋近+∞,自变量趋近+∞,函数值趋近0。
零值性质:
当a=0时,幂函数有下列性质:
a、y=x0的图像是直线y=1去掉一点(0,1)。它的图像不是直线。
3、值域不同。
指数函数的值域是(0,+∞),幂函数的值域是R。
1、自变量x的位置不同。
指数函数,自变量x在指数的位置上,y=a^x(a>0,a 不等于 1)。
幂函数,自变量 x 在底数的位置上,y=x^a(a 不等于 1). a 不等于 1,但可正可负,取不同的值,图像及性质是不一样的。
2、性质不同。
指数函数性质:
当 a>1 时,函数是递增函数,且 y>0;
当 0<a<1 时,函数是递减函数,且 y>0。
幂函数性质:
正值性质:
当a>0时,幂函数有下列性质:
a、图像都经过点(1,1)(0,0);
b、函数的图像在区间[0,+∞)上是增函数;
c、在第一象限内,a>1时,导数值逐渐增大;a=1时,导数为常数;0<a<1时,导数值逐渐减小,趋近于0(函数值递增);
负值性质:
当a<0时,幂函数有下列性质:
a、图像都通过点(1,1);
b、图像在区间(0,+∞)上是减函数;(内容补充:若为X-2,易得到其为偶函数。利用对称性,对称轴是y轴,可得其图像在区间(-∞,0)上单调递增。其余偶函数亦是如此)。
c、在第一象限内,有两条渐近线(即坐标轴),自变量趋近0,函数值趋近+∞,自变量趋近+∞,函数值趋近0。
零值性质:
当a=0时,幂函数有下列性质:
a、y=x0的图像是直线y=1去掉一点(0,1)。它的图像不是直线。
3、值域不同。
指数函数的值域是(0,+∞),幂函数的值域是R。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询