利用初等变换求逆矩阵及矩阵的秩
5311-3-2-521求下列矩阵秩1-12102-2420306-1103001还有12341-24511012...
5 3 1 1 -3 -2 -5 2 1 求下列矩阵秩 1 -1 2 1 0 2 -2 4 2 0 3 0 6 -1 1 0 3 0 0 1 还有 1 2 3 4 1 -2 4 5 1 10 1 2
展开
1个回答
展开全部
1.
解:
(A,E)
=
5
3
1
1
0
0
1
-3
-2
0
1
0
-5
2
1
0
0
1
r1-r3,r2+2r3
10
1
0
1
0
-1
-9
1
0
0
1
2
-5
2
1
0
0
1
r2-r1,r3-2r1
10
1
0
1
0
-1
-19
0
0
-1
1
3
-15
0
1
-2
0
3
r2*(-1/19),
r1-10r2,
r3+15r2
0
1
0
9/19
10/19
11/19
1
0
0
1/19
-1/19
-3/19
0
0
1
-13/19
-25/19
-18/19
r1<->r2
1
0
0
1/19
-1/19
-3/19
0
1
0
9/19
10/19
11/19
0
0
1
-13/19
-25/19
-18/19
逆矩阵
A^-1
=
1/19
-1/19
-3/19
9/19
10/19
11/19
-13/19
-25/19
-18/19
2.
r2-2r1,r3-3r1
1
-1
2
1
0
0
0
0
0
0
0
3
0
-4
1
0
3
0
0
1
r4-r3
1
-1
2
1
0
0
0
0
0
0
0
3
0
-4
1
0
0
0
4
0
交换行得
1
-1
2
1
0
0
3
0
-4
1
0
0
0
4
0
0
0
0
0
0
秩
=
梯矩阵的非零行数
=
3.
3.
1
2
3
4
1
-2
4
5
1
10
1
2
r2-r2,r3-r2
1
2
3
4
0
-4
1
1
0
8
-2
-2
r3+2r2
1
2
3
4
0
-4
1
1
0
0
0
0
秩
=
2
满意请采纳^_^
解:
(A,E)
=
5
3
1
1
0
0
1
-3
-2
0
1
0
-5
2
1
0
0
1
r1-r3,r2+2r3
10
1
0
1
0
-1
-9
1
0
0
1
2
-5
2
1
0
0
1
r2-r1,r3-2r1
10
1
0
1
0
-1
-19
0
0
-1
1
3
-15
0
1
-2
0
3
r2*(-1/19),
r1-10r2,
r3+15r2
0
1
0
9/19
10/19
11/19
1
0
0
1/19
-1/19
-3/19
0
0
1
-13/19
-25/19
-18/19
r1<->r2
1
0
0
1/19
-1/19
-3/19
0
1
0
9/19
10/19
11/19
0
0
1
-13/19
-25/19
-18/19
逆矩阵
A^-1
=
1/19
-1/19
-3/19
9/19
10/19
11/19
-13/19
-25/19
-18/19
2.
r2-2r1,r3-3r1
1
-1
2
1
0
0
0
0
0
0
0
3
0
-4
1
0
3
0
0
1
r4-r3
1
-1
2
1
0
0
0
0
0
0
0
3
0
-4
1
0
0
0
4
0
交换行得
1
-1
2
1
0
0
3
0
-4
1
0
0
0
4
0
0
0
0
0
0
秩
=
梯矩阵的非零行数
=
3.
3.
1
2
3
4
1
-2
4
5
1
10
1
2
r2-r2,r3-r2
1
2
3
4
0
-4
1
1
0
8
-2
-2
r3+2r2
1
2
3
4
0
-4
1
1
0
0
0
0
秩
=
2
满意请采纳^_^
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
图为信息科技(深圳)有限公司
2021-01-25 广告
2021-01-25 广告
边缘计算方案可以咨询图为信息科技(深圳)有限公司了解一下,图为信息科技(深圳)有限公司(简称:图为信息科技)是基于视觉处理的边缘计算方案解决商。作为一家创新企业,多年来始终专注于人工智能领域的发展,致力于为客户提供满意的解决方案。...
点击进入详情页
本回答由图为信息科技(深圳)有限公司提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询