1-x^3因式分解是什么?
1-X^3=(1-x)(1+x+x^2)
分析:
公式a^3-b^3=(a-b)(a^2+ab+b^2)
则1-X^3=(1-x)(1+x+x^2)
把一个多项式在一个范围(如实数范围内分解,即所有项均为实数)化为几个整式的积的形式,这种式子变形叫做这个多项式的因式分解,也叫作把这个多项式分解因式。
因分解樤是中学数学中最重要的恒等变形之一,它被广泛地应用于初等数学之中,在数学求根作图、解一元二次方程方面也有很广泛的应用。是解决许多数学问题的有力工具。
因式分解与解高次方程有密切的关系。对于一元一次方程和一元二次方程,初中已有相对固定和容易的方法。在数学上可以证明,对于一元三次方程和一元四次方程,也有固定的公式可以求解。
1-X^3=(1-x)(1+x+x^2)
分析:
公式a^3-b^3=(a-b)(a^2+ab+b^2)
则1-X^3=(1-x)(1+x+x^2)
分解一般步骤:
1、如果多项式的首项为负,应先提取负号。这里的“负”,指“负号”。如果多项式的第一项是负的,一般要提出负号,使括号内第一项系数是正的。
2、如果多项式的各项含有公因式,那么先提取这个公因式,再进一步分解因式。
要注意:多项式的某个整项是公因式时,先提出这个公因式后,括号内切勿漏掉1;提公因式要一次性提干净,并使每一个括号内的多项式都不能再分解。
3、如果各项没有公因式,那么可尝试运用公式、十字相乘法来分解。
4、如果用上述方法不能分解,再尝试用分组、拆项、补项法来分解。