图像分析:边缘检测中的梯度算子

 我来答
机器1718
2022-07-01 · TA获得超过6841个赞
知道小有建树答主
回答量:2805
采纳率:99%
帮助的人:161万
展开全部

边缘检测 是基于边界的图像分割方法的第一步,边缘就是两个不同的相邻区域之间 灰度值 不连续或者突变的地方。因此,检测边缘就是,检测灰度明显变化的地方。而边缘位置处灰度的明显变化是可以借助计算灰度的微分来检测的。一般使用一阶微分和二阶微分检测边缘,在边缘位置,一阶微分的幅度值会有局部极值,二阶微分的幅度值会出现过零点。本文主要介绍边缘检测中的一阶微分算子----梯度算子,包括Roberts、Prewitt和Sobel三种算子。

想要计算梯度图,就要设计模板卷积,首先要搞明白图像在计算时的坐标系,很多博文对应的模板和坐标系都不匹配,我们在后面的卷积操作中主要使用计算坐标系。

左图Cameraman所用的坐标系统,常用在图像计算中。其坐标原点在左上角,x轴是水平的,并且向右延伸;y是垂直的,并且向下延伸。 既可以代表这幅图像,也可以表示 坐标处像素的值。

右图Lena的坐标系统,常用在屏幕显示中,因为屏幕扫描是从左向右,从上向下进行的,原点在图像的左上角,纵轴标记图像的行,横轴标记图像的列。 既可以代表这个图像,也可以代表 行列交点处的图像值。

首先我们要知道的是梯度是一个向量,向量的话有方向和大小,梯度方向指向函数变化最快的方向,大小就是它的模,也是最大的变化率。对于二元函数 ,它在点 的梯度就是 , 或者 ,就是:

其中, ,这个梯度向量的幅度和方向角为

下图展示了一个灰度图的数学化表达,像素点 的灰度值是 ,它有八个邻域。

图像在点 的梯度为

其中

即 对应图像的水平方向, 即 对应水图像的竖直方向。

要理解梯度图的生成,就要先了解模板卷积的过程。
模板卷积是模板运算的一种方式,其步骤如下:
(1)将模板在输入图像中漫游,并将模板中心与图像中某个像素位置重合;
(2)将模板上各个系数与模板下各对应像素的灰度相乘;
(3)将所有乘积相加(为保持灰度范围,常将结果再除以模板系数之和,后面梯度算子模板和为0的话就不需要除了);
(4)将上述运算结果(模板的响应输出)赋给输出图像中对应模板中心位置的像素。

其实梯度图生成前面和模板卷积相同,不同的是要生成梯度图,还需要在模板卷积完成后计算在点 梯度的幅值,将幅值作为像素值,这样才算完。 。

下图是生成梯度图用到的的水平模板和竖直模板:

例如,如果只想生成水平方向的梯度图,那么只计算水平方向的梯度 ,则梯度图上对应点 的灰度值就是

一般是水平方向的 和竖直方向的 各用一个模板,然后结合,那么得到梯度图在点 的灰度值就是

它就是我们上面说到的梯度的幅值,是以计算以2为范数,对应欧式距离,由于涉及平方和开方运算,计算量比较大。(怎么简化计算呢??换一种近似计算方式吧!!!)
在真实的梯度图输出计算中,采用以1为范数(对应城区距离)的简单计算方式,即

另一种简单的方式是以 为范数(对应棋盘距离),即

首先了解下梯度算子的设计,一般是水平方向和竖直方向,水平方向模板转置再对折就是竖直方向。

其本质是一个对角线方向的梯度算子,对应的水平方向和竖直方向的梯度分别为
输出梯度图在 的灰度值为
优点:边缘定位较准
缺点:(1)没有描述水平和竖直方向的灰度变化,只关注了对角线方向,容易造成遗漏。(2)鲁棒性差。由于 点本身参加了梯度计算,不能有效的抑制噪声的干扰。
适用于边缘明显且噪声较少的图像。

Prewitt算子是典型的 模板,其模板中心对应要求梯度的原图像坐标 , 对应的8-邻域的像素灰度值如下表所示:

通过Prewitt算子的水平模板 卷积后,对应的水平方向梯度为

通过Prewitt算子的竖直模板 卷积后,对应的竖直方向梯度为

输出梯度图在 的灰度值为

Prewitt算子引入了类似局部平均的运算,对噪声具有平滑作用,较Roberts算子更能抑制噪声。

通过Prewitt算子的水平模板 卷积后,对应的水平方向梯度为

通过Prewitt算子的竖直模板 卷积后,对应的竖直方向梯度为

输出梯度图在 的灰度值为

Sobel算子引入了类似局部加权平均的运算,对边缘的定位比要比Prewitt算子好。

Python 调用OpenCV接口实现Sobel算子边缘检测

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
图为信息科技(深圳)有限公司
2021-01-25 广告
边缘计算方案可以咨询图为信息科技(深圳)有限公司了解一下,图为信息科技(深圳)有限公司(简称:图为信息科技)是基于视觉处理的边缘计算方案解决商。作为一家创新企业,多年来始终专注于人工智能领域的发展,致力于为客户提供满意的解决方案。... 点击进入详情页
本回答由图为信息科技(深圳)有限公司提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式