二项式定理展开式公式
二项式展开公式:(a+b)^n=a^n+C(n,1)a^(n-1)b+C(n,2)a^(n-2)b^2+...+C(n,n-1)ab^(n-1)+b^n,二项式定理也叫做牛顿二项式定理,是牛顿在十七世纪六十年代提出的,该定理给出两个数之和的整数次幂诸如展开为类似项之和的恒等式。二项式定理可以推广到任意实数次幂,即广义二项式定理。
用数学归纳法证明二项式定理:
证明:当n=1时,左边=(a+b)1=a+b
右边=C01a+C11b=a+b;左边=右边
假设当n=k时,等式成立,即(a+b)n=C0nan+C1n a(n-1)b+…+Crn a(n-r)br+…+Cnn bn成立;
则当n=k+1时, (a+b)(n+1)=(a+b)n*(a+b)=[C0nan+C1n a(n-1)b+…+Crn a(n-r)br+…+Cnn bn]*(a+b)
=[C0nan+C1n a(n-1)b+…+Crn a(n-r)br+…+Cnn bn]*a+[C0nan+C1n a(n-1)b+…+Crn a(n-r)br+…+Cnn bn]*b
=[C0na(n+1)+C1n anb+…+Crn a(n-r+1)br+…+Cnn abn]+[C0nanb+C1n a(n-1)b2+…+Crn a(n-r)b(r+1)+…+Cnn b(n+1)]
=C0na(n+1)+(C0n+C1n)anb+…+(C(r-1)n+Crn) a(n-r+1)br+…+(C(n-1)n+Cnn)abn+Cnn b(n+1)]
=C0(n+1)a(n+1)+C1(n+1)anb+C2(n+1)a(n-1)b2+…+Cr(n+1) a(n-r+1)br+…+C(n+1)(n+1) b(n+1)
∴当n=k+1时,等式也成立;
二项展开式的性质:
1、项数: n+1项;
2、第k+1项的二项式系数是Cₙᵏ;
3、在二项展开式中,与首末两端等距离的两项的二项式系数相等;
4、如果二项式的幂指数是偶数,中间的一项的二项式系数最大。如果二项式的幂指数
是奇数,中间两项的的二项式系数最大,并且相等。
所以对于任意正整数,等式都成立。
16世纪,许多数学家的书中都载有二项式系数表。1654年,法国的帕斯卡最早建立了一般正整数次幂的二项式定理,因此算术三角形在西方至今仍以他的名字命名。1665年,英国的牛顿将二项式定理推广到有理指数的情形。
18世纪,瑞士的欧拉和意大利的卡斯蒂隆分别采用待定系数法和“先异后同”的方法证明了实指数情形的二项式定理。
艾萨克·牛顿简介:
艾萨克·牛顿(1643年1月4日—1727年3月31日),爵士,英国皇家学会会长,英国著名的物理学家、数学家,百科全书式的“全才”,著有《自然哲学的数学原理》、《光学》。
牛顿的一项被广泛认可的成就是广义二项式定理,它适用于任何幂。他发现了牛顿恒等式、牛顿法,分类了立方面曲线(两变量的三次多项式),为有限差理论作出了重大贡献,并首次使用了分式指数和坐标几何学得到丢番图方程的解。他用对数趋近了调和级数的部分和(这是欧拉求和公式的一个先驱),并首次有把握地使用幂级数和反转(revert)幂级数。他还发现了π的一个新公式。
2024-12-27 广告