如何证明:若a为整数,则a的立方-a能被6整除 通俗一点.

 我来答
可杰17
2022-05-10 · TA获得超过951个赞
知道小有建树答主
回答量:309
采纳率:100%
帮助的人:57.1万
展开全部
A的立方 - A
= A×(A的平方 - 1)
= A×(A + 1)×(A - 1)
= (A - 1)×A×(A + 1)
因(A - 1)、A、(A + 1)是三个连续的整数,根据抽屉原则:
1、其中至少有一个偶数;
2、其中至少有一个被3整除的数.
因此这三个数的连乘积能被2、3整除,亦即被6整除.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式