设矩阵A,B及A+B都可逆,证明A^-1+B^-1也可逆,并求其矩阵
1个回答
展开全部
由(A^-1)+(B^-1)=(A^-1)*(A+B)*(B^-1)得((A^-1)+(B^-1))*(B*((A+B)^-1)*A)=((A^-1)*(A+B)(B^-1))*(B*((A+B)^-1)*A)=I.(B*((A+B)^-1)*A)*((A^-1)+(B^-1))=(B*((A+B)^-1)*A)*((A^-1)*(A+B)*(B^-1))=I.故(A^-1)+(B^-1)...
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询