三角函数公式初中
三角函数公式如下:
公式一:
设α为任意角,终边相同的角的同一三角函数的值相等:
sin(α+k*2π)=sinα (k为整数)
cos(α+k*2π)=cosα(k为整数)
tan(α+k*2π)=tanα(k为整数)
公式二:
设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:
sin[(2k+1)π+α]=-sinα
cos[(2k+1)π+α]=-cosα
tan[(2k+1)π+α]=tanα
cot[(2k+1)π+α]=cotα
公式三:
任意角α与-α的三角函数值之间的关系:
sin(2kπ-α)=-sinα
cos(2kπ-α)=cosα
tan(2kπ-α)=-tanα
cot(2kπ-α)=-cotα
公式四:
利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:
sin[(2k+1)π-α]=sinα
cos[(2k+1)π-α]=-cosα
tan[(2k+1)π-α]=-tanα
cot[(2k+1)π-α]=-cotα
公式五:
利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:
sin(2kπ-α)=-sinα
cos(2kπ-α)=cosα
tan(2kπ-α)=-tanα
cot(2kπ-α)=-cotα
公式六:
π/2±α与α的三角函数值之间的关系:
sin(π/2+α)=cosα
cos(π/2+α)=-sinα
tan(π/2+α)=-cotα
cot(π/2+α)=-tanα
sin(π/2-α)=cosα
cos(π/2-α)=sinα
tan(π/2-α)=cotα
cot(π/2-α)=tanα