最大似然估计法公式

 我来答
呦呦璐蓂
2022-12-16 · TA获得超过538个赞
知道大有可为答主
回答量:6270
采纳率:100%
帮助的人:94.8万
展开全部

最大似然估计法公式:

给定一个概率分布D,假定其概率密度函数(连续分布)或概率聚集函数(离散分布)为fD,以及一个分布参数θ,我们可以从这个分布中抽出一个具有n个值的采样X1,X2,...,Xn,通过利用fD,我们就能计算出其概率:

但是,我们可能不知道θ的值,尽管我们知道这些采样数据来自于分布D。那么我们如何才能估计出θ呢?一个自然的想法是从这个分布中抽出一个具有n个值的采样X1,X2,...,Xn,然后用这些采样数据来估计θ。

一旦我们获得,我们就能从中找到一个关于θ的估计。最大似然估计会寻找关于 θ的最可能的值(即,在所有可能的θ取值中,寻找一个值使这个采样的“可能性”最大化)。

这种方法正好同一些其他的估计方法不同,如θ的非偏估计,非偏估计未必会输出一个最可能的值,而是会输出一个既不高估也不低估的θ值。

要在数学上实现最大似然估计法,我们首先要定义可能性:

并且在θ的所有取值上,使这个函数最大化。这个使可能性最大的值即被称为θ的最大似然估计。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式