∫e^(-x^2)dx的积分怎么求?

 我来答
私玥Bw
高能答主

2022-10-28 · 致力于成为全知道最会答题的人
知道小有建树答主
回答量:800
采纳率:0%
帮助的人:14.8万
展开全部

∫e^(-x^2)dx=I^(1/2)=根号下π。

解法如下:

I=[∫e^(-x^2)dx]*[∫e^(-y^2)dy]

=∫∫e^(-x^2-y^2)dxdy

转化成极坐标

=[∫(0-2π)da][∫(0-+无穷)e^(-p^2)pdp]

=2π*[(-1/2)e^(-p^2)|(0-+无穷)]

=2π*1/2

不定积分的公式

1、∫ a dx = ax + C,a和C都是常数

2、∫ x^a dx = [x^(a + 1)]/(a + 1) + C,其中a为常数且 a ≠ -1

3、∫ 1/x dx = ln|x| + C

4、∫ a^x dx = (1/lna)a^x + C,其中a > 0 且 a ≠ 1

5、∫ e^x dx = e^x + C

6、∫ cosx dx = sinx + C

7、∫ sinx dx = - cosx + C

8、∫ cotx dx = ln|sinx| + C = - ln|cscx| + C

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式