用泰勒公式求极限 要展开到多少项
2022-12-22 · 百度认证:北京惠企网络技术有限公司官方账号
关注
展开全部
泰勒公式求极限,具要看题设,有的题展开3项即能作答,而有的题则要求展开到n项。
若函数f(x)在包含x0的某个闭区间[a,b]上具有n阶导数,且在开区间(a,b)上具有(n+1)阶导数,则对闭区间[a,b]上任意一点x,成立下式:
其中,表示f(x)的n阶导数,等号后的多项式称为函数f(x)在x0处的泰勒展开式,剩余的Rn(x)是泰勒公式的余项,是(x-x0)n的高阶无穷小。
扩展资料:
常用函数的泰勒公式:
泰勒公式的应用:
1、幂级数的求导和积分可以逐项进行,因此求和函数相对比较容易。
2、一个解析函数可被延伸为一个定义在复平面上的一个开片上的解析函数,并使得复分析这种手法可行。
3、泰勒级数可以用来近似计算函数的值,并估计误差。
4、证明不等式。
5、求待定式的极限。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询