已知向量组a1 a2 a3线性无关 求证向量组a1, a1+a2,a1+a2+a3线性无关
2022-12-22 · 百度认证:北京惠企网络技术有限公司官方账号
已知向量组a1 a2 a3线性无关 求证向量组a1, a1+a2,a1+a2+a3线性无关,结果如下所示。
反证法即可,设a1, a1+a2,a1+a2+a3线性相关,那么存在一组不全为零的数x,y,z使得xa1+y(a1+a2)+z(a1+a2+a3)=0,若z≠0,那么变形可知a3=(xa1+y(a1+a2)+z(a1+a2))/z,即a3可以由a1,a2线性表出,与它们线性无关矛盾,故z=0;进一步若y≠0,那么类似得到a2可以由a1线性表出,也矛盾,故y=0,进一步推出x=0,而这与x,y,z不全为0矛盾,故假设不成立,即a1, a1+a2,a1+a2+a3线性无关;
扩展资料:
在数学中,向量(也称为欧几里得向量、几何向量、矢量),指具有大小(magnitude)和方向的量。它可以形象化地表示为带箭头的线段。箭头所指:代表向量的方向;线段长度:代表向量的大小。与向量对应的只有大小,没有方向的量叫做数量(物理学中称标量)。 向量的记法:印刷体记作粗体的字母(如a、b、u、v),书写时在字母顶上加一小箭头“→”。 如果给定向量的起点(A)和终点(B),可将向量记作AB(并于顶上加→)。
在空间直角坐标系中,也能把向量以数对形式表示,例如Oxy平面中(2,3)是一向量。 在物理学和工程学中,几何向量更常被称为矢量。许多物理量都是矢量,比如一个物体的位移,球撞向墙而对其施加的力等等。与之相对的是标量,即只有大小而没有方向的量。一些与向量有关的定义亦与物理概念有密切的联系,例如向量势对应于物理中的势能。 几何向量的概念在线性代数中经由抽象化,得到更一般的向量概念。此处向量定义为向量空间的元素,要注意这些抽象意义上的向量不一定以数对表示,大小和方向的概念亦不一定适用。
因此,平日阅读时需按照语境来区分文中所说的"向量"是哪一种概念。不过,依然可以找出一个向量空间的基来设置坐标系,也可以透过选取恰当的定义,在向量空间上介定范数和内积,这允许我们把抽象意义上的向量类比为具体的几何向量。
广告 您可能关注的内容 |