一元一次方程应用题 给我发多点
一元一次方程应用题给我发多点马上要考试了,给我多发几道有代表性的一元一次方程应用题……谢啦快些……带答案...
一元一次方程应用题 给我发多点 马上要考试了,给我多发几道有代表性的一元一次方程应用题…… 谢啦 快些…… 带答案
展开
13个回答
展开全部
在一个方程中,如果只含有一个未知数,且未知数的最高次数是1的整式方程叫做一元一次方程。
一般形式:ax+b=0(a、b为常数,a≠0)。一元一次方程只有一个解。
一元一次方程的最终结果(方程的解)是x=a的形式
一元一次方程的“等式的性质1”和“等式的性质2”
1.等式两边同时加或减一个相同数,等式两边相等。(如果a=b,那么a±b=b±c。)
2.等式两边同时乘或除以一个相同数(0除外),或一个整式,等式两边相等。(如果a=b,那么ac=bc。如果a=b,c≠0,那么a/c=b/c。)
解法是通过移项将未知数移到一边,再把常数移到一边(等式基本性质1,注意符号!),然后两边同时除以未知数系数(化系数为1,等式基本性质2),即可得到未知数的值。
例:7x+23=100
解: 7x=100-23
7x=77
x=77÷7
x=11
在小学算术中,我们学习了用算术方法解决实际问题的有关知识,那么,一个实际问题能否应用一元一次方程来解决呢?若能解决,怎样解?用一元一次方程解应用题与用算术方法解应用题相比较,它有什么优越性呢?
为了回答上述这几个问题,我们来看下面这个例题.
例1 某数的3倍减2等于某数与4的和,求某数.
(首先,用算术方法解,由学生回答,教师板书)
解法1:(4+2)÷(3-1)=3.
答:某数为3.
(其次,用代数方法来解,教师引导,学生口述完成)
解法2:设某数为x,则有3x-2=x+4.
解之,得x=3.
答:某数为3.
纵观例1的这两种解法,很明显,算术方法不易思考,而应用设未知数,列出方程并通过解方程求得应用题的解的方法,有一种化难为易之感,这就是我们学习运用一元一次方程解应用题的目的之一.
我们知道方程是一个含有未知数的等式,而等式表示了一个相等关系.因此对于任何一个应用题中提供的条件,应首先从中找出一个相等关系,然后再将这个相等关系表示成方程.
简单的应用:求加数=和—另一个加数
求被减数=差+减数
求减数=被减数-差
求因数=积/另一个因数
求被除数=商*除数
求除数=被除数/商
一般解法:
⒈去分母 方程两边同时乘各分母的最小公倍数。
⒉去括号 一般先去小括号,在去中括号,最后去大括号。但顺序有时可依据情况而定使计算简便。可根据乘法分配律。
⒊移项 把方程中含有未知数的项移到方程的另一边,其余各项移到方程的另一边移项时别忘记了要变号。
⒋合并同类项 将原方程化为ax=b(a≠0)的形式。
⒌系数化1 方程两边同时除以未知数的系数,得出方程的解。
一元一次方程练习题
基本题型:
一、选择题:
1、下列各式中是一元一次方程的是( )
A. B.
C. D.
2、方程 的解是( )
A. B. C. 1 D. -1
3、若关于 的方程 的解满足方程 ,则 的值为( )
A. 10 B. 8 C. D.
4、下列根据等式的性质正确的是( )
A. 由 ,得 B. 由 ,得
C. 由 ,得 D. 由 ,得
5、解方程 时,去分母后,正确结果是( )
A. B.
C. C.
6、电视机售价连续两次降价10%,降价后每台电视机的售价为a 元,则该电视机的原价为( )
A. 0.81a 元 B. 1.21a元 C. 元 D. 元
8、某商店卖出两件衣服,每件60元,其中一件赚25%,另一件亏25%,那么这两件衣服卖出后,商店是 ( )
A.不赚不亏 B.赚8元 C.亏8元 D. 赚8元
9、下列方程中,是一元一次方程的是( )
(A) (B) (C) (D)
10、方程 的解是( )
(A) (B) (C) (D)
11、已知等式 ,则下列等式中不一定成立的是( )
(A) (B)
(C) (D)
12、方程 的解是 ,则 等于( )
(A) (B) (C) (D)
13、解方程 ,去分母,得( )
(A) (B)
(C) (D)
14、下列方程变形中,正确的是( )
(A)方程 ,移项,得
(B)方程 ,去括号,得
(C)方程 ,未知数系数化为1,得
(D)方程 化成
15、儿子今年12岁,父亲今年39岁,( )父亲的年龄是儿子的年龄的4倍.
(A)3年后; (B)3年前; (C)9年后; (D)不可能.
16、重庆力帆新感觉足球队训练用的足球是由32块黑白相间的牛皮缝制而成的,其中黑皮可看作正五边形,白皮可看作正六边形,黑、白皮块的数目比为3:5,要求出黑皮、白皮的块数,若设黑皮的块数为 ,则列出的方程正确的是( )
(A) (B)
(C) (D)
17、珊瑚中学修建综合楼后,剩有一块长比宽多5m、周长为50m的长方形空地. 为了美化环境,学校决定将它种植成草皮,已知每平方米草皮的种植成本最低是 元,那么种植草皮至少需用( )
(A) 元; (B) 元; (C) 元; (D) 元.
一年期 二年期 三年期
2.25 2.43 2.70
18、银行教育储蓄的年利率如右下表:
小明现正读七年级,今年7月他父母为他在银行存款30000元,以供3年后上高中使用. 要使3年后的收益最大,则小明的父母应该采用( )
(A)直接存一个3年期;
(B)先存一个1年期的,1年后将利息和自动转存一个2年期;
(C)先存一个1年期的,1年后将利息和自动转存两个1年期;
(D)先存一个2年期的,2年后将利息和自动转存一个1年期.
二. 填空题:
1、 ,则 ________.
2、已知 ,则 __________.
3、关于 的方程 的解是3,则 的值为________________.
4、现有一个三位数,其个位数为 ,十位上的数字为 ,百位数上的数字为 ,则这个三位数表示为__________________.
5、甲、乙两班共有学生96名,甲班比乙班多2人,则乙班有____________人.
6、某数的3倍比它的一半大2,若设某数为 ,则列方程为____.
7、当 ___时,代数式 与 的值互为相反数.
8、在公式 中,已知 ,则 ___.
日 一 二 三 四 五 六
1 2 3 4 5 6
7 8 9 10 11 12 13
14 15 16 17 18 19 20
21 22 23 24 25 26 27
28 29 30 31
9、如右图是2003年12月份的日历,现用一长方形在日历中任意框出4个数
,请用一个等式表示 之间的关系______________.
10、一根内径为3㎝的圆柱形长试管中装满了水,现把试管中的水逐渐滴入一个内径为8㎝、高为1.8㎝的圆柱形玻璃杯中,当玻璃杯装满水时,试管中的水的高度下降了____㎝.
11、国庆期间,“新世纪百货”搞换季打折. 简爽同学以8折的优惠价购买了一件运动服节省16元,那么他购买这件衣服实际用了___元.
12、成渝铁路全长504千米. 一辆快车以90千米/时的速度从重庆出发,1小时后,另有一辆慢车以48千米/时的速度从成都出发,则慢车出发__小时后两车相遇(沿途各车站的停留时间不计).
13、我们小时候听过龟兔赛跑的故事,都知道乌龟最后战胜了小白兔. 如果在第二次赛跑中,小白兔知耻而后勇,在落后乌龟1千米时,以101米/分的速度奋起直追,而乌龟仍然以1米/分的速度爬行,那么小白兔大概需要___分钟就能追上乌龟.
14、一年定期存款的年利率为1.98%,到期取款时须扣除利息的20%作为利息税上缴国库. 假若小颖存一笔一年定期储蓄,到期扣除利息税后实得利息158.4元,那么她存入的人民币是____元
15、52辆车排成两队,每辆车长a米,前后两车间隔3a/2米,车队平均每分钟行50米,这列车队通过长为546米的广场需要的时间是16分钟,则a=__________.
三、解方程:
1、 2、
3、 4、
5、 6、
7、 8、
9、已知 是方程 的根,求代数式 的值.
四、列方程解应用题:
1、敌军在离我军8千米的驻地逃跑,时间是早晨4点,我军于5点出发以每小时10千米的速度追击,结果在7点追上.求敌军逃跑时的速度是多少?
2、期中考查,信息技术课老师限时40分钟要求每位七年级学生打完一篇文章. 已知独立打完同样大小文章,小宝需要50分钟,小贝只需要30分钟. 为了完成任务,小宝打了30分钟后,请求小贝帮助合作,他能在要求的时间打完吗?
3、在学完“有理数的运算”后,实验中学七年级各班各选出5名学生组成一个代表队,在数学方老师的组织下进行一次知识竞赛. 竞赛规则是:每队都分别给出50道题,答对一题得3分,⑴ 如果二班代表队最后得分142分,那么二班代表队回答对了多少道题?⑵ 一班代表队的最后得分能为145分吗?请简要说明理由.
4、某“希望学校”修建了一栋4层的教学大楼,每层楼有6间教室,进出这栋大楼共有3道门(两道大小相同的正门和一道侧门). 安全检查中,对这3道门进行了测试:当同时开启一道正门和一道侧门时,2分钟内可以通过400名学生,若一道正门平均每分钟比一道侧门可多通过40名学生.
(1)求平均每分钟一道正门和一道侧门各可以通过多少名学生?
(2)检查中发现,紧急情况时因学生拥挤,出门的效率降低20%. 安全检查规定:在紧急情况下全大楼的学生应在5分钟内通过这3道门安全撤离. 假设这栋教学大楼每间教室最多有45名学生,问:建造的这3道门是否符合安全规定?为什么?
5、黑熊妈妈想检测小熊学习“列方程解应用题”的效果,给了小熊19个苹果,要小熊把它们分成4堆. 要求分后,如果再把第一堆增加一倍,第二堆增加一个,第三堆减少两个,第四堆减少一倍后,这4堆苹果的个数又要相同. 小熊捎捎脑袋,该如何分这19个苹果为4堆呢?
6、学校准备拿出2000元资金给22名“希望杯”竞赛获奖学生买奖品,一等奖每人200元奖品,二等奖每人50元奖品,求得到一等奖和二等奖的学生分别是多少人?
7、一家商店将某种商品按成本价提高40%后标价,元旦期间,欲打八折销售,以答谢新老顾客对本商厦的光顾,售价为224元,这件商品的成本价是多少元?
8、甲乙两人从学校到1000米远的展览馆去参观,甲走了5分钟后乙才出发,甲的速度是80米/分,乙的速度是180米/分,问乙多长时间能追上甲?追上甲时离展览馆还有多远?
较高要求:
1、已知 ,那么代数式 的值。
2、(2001年江苏省无锡市中考题)某商场根据市场信息,对商场中现有的两台不同型号的空调进行调价销售,其中一台空调调价后售出可获利10%(相对于进价),另一台空调调价后售出则亏本10%(相对于进价),而这两台空调调价后的售价恰好相同,那么商场把这两台空调调价后售出( ).
(A)既不获利也不亏本 (B)可获利1% (C)要亏本2% (D)要亏本1%
3、某开发商按照分期付款的形式售房,小明家购买了一套现价为12万元的新房,购房时需首付(第一年)款3万元,从第二年起,以后每年应付房款为5000元与上一年剩余欠款的利息之和。已知剩余款的年利率为0.4%,问第几年小明家需交房款5200元?
4、某牛奶加工厂现有鲜奶9吨,若在市场上直接销售鲜奶,每吨可获利润500元,若制成酸奶销售,每吨可获利润1200元;若制成奶片销售,每吨可获利润2000元.
方案一:尽可能多的制成奶片,其余直接销售鲜牛奶;
方案二:将一部分制成奶片,其余制成酸奶销售,并恰好4天完成;
(1)你认为选择哪种方案获利最多,为什么?
(2)本题解出之后,你还能提出哪些问题?若没解出,写出你存在的问题?
5、两辆汽车从同一地点同时出发,沿着同一方向同速直线行驶,每车最多只能带24桶汽油,途中不能用别的油,每桶油可使一辆车前进60公里,两车都必须返回出发地点,但是可以不同时返回,两车相互可借用对方的油。为了使其中一车尽可能地远离出发地点,另一辆车应当在离出发地点多少公里地方返回?离出发地点最远的那辆车一共行驶了多少公里?
一般形式:ax+b=0(a、b为常数,a≠0)。一元一次方程只有一个解。
一元一次方程的最终结果(方程的解)是x=a的形式
一元一次方程的“等式的性质1”和“等式的性质2”
1.等式两边同时加或减一个相同数,等式两边相等。(如果a=b,那么a±b=b±c。)
2.等式两边同时乘或除以一个相同数(0除外),或一个整式,等式两边相等。(如果a=b,那么ac=bc。如果a=b,c≠0,那么a/c=b/c。)
解法是通过移项将未知数移到一边,再把常数移到一边(等式基本性质1,注意符号!),然后两边同时除以未知数系数(化系数为1,等式基本性质2),即可得到未知数的值。
例:7x+23=100
解: 7x=100-23
7x=77
x=77÷7
x=11
在小学算术中,我们学习了用算术方法解决实际问题的有关知识,那么,一个实际问题能否应用一元一次方程来解决呢?若能解决,怎样解?用一元一次方程解应用题与用算术方法解应用题相比较,它有什么优越性呢?
为了回答上述这几个问题,我们来看下面这个例题.
例1 某数的3倍减2等于某数与4的和,求某数.
(首先,用算术方法解,由学生回答,教师板书)
解法1:(4+2)÷(3-1)=3.
答:某数为3.
(其次,用代数方法来解,教师引导,学生口述完成)
解法2:设某数为x,则有3x-2=x+4.
解之,得x=3.
答:某数为3.
纵观例1的这两种解法,很明显,算术方法不易思考,而应用设未知数,列出方程并通过解方程求得应用题的解的方法,有一种化难为易之感,这就是我们学习运用一元一次方程解应用题的目的之一.
我们知道方程是一个含有未知数的等式,而等式表示了一个相等关系.因此对于任何一个应用题中提供的条件,应首先从中找出一个相等关系,然后再将这个相等关系表示成方程.
简单的应用:求加数=和—另一个加数
求被减数=差+减数
求减数=被减数-差
求因数=积/另一个因数
求被除数=商*除数
求除数=被除数/商
一般解法:
⒈去分母 方程两边同时乘各分母的最小公倍数。
⒉去括号 一般先去小括号,在去中括号,最后去大括号。但顺序有时可依据情况而定使计算简便。可根据乘法分配律。
⒊移项 把方程中含有未知数的项移到方程的另一边,其余各项移到方程的另一边移项时别忘记了要变号。
⒋合并同类项 将原方程化为ax=b(a≠0)的形式。
⒌系数化1 方程两边同时除以未知数的系数,得出方程的解。
一元一次方程练习题
基本题型:
一、选择题:
1、下列各式中是一元一次方程的是( )
A. B.
C. D.
2、方程 的解是( )
A. B. C. 1 D. -1
3、若关于 的方程 的解满足方程 ,则 的值为( )
A. 10 B. 8 C. D.
4、下列根据等式的性质正确的是( )
A. 由 ,得 B. 由 ,得
C. 由 ,得 D. 由 ,得
5、解方程 时,去分母后,正确结果是( )
A. B.
C. C.
6、电视机售价连续两次降价10%,降价后每台电视机的售价为a 元,则该电视机的原价为( )
A. 0.81a 元 B. 1.21a元 C. 元 D. 元
8、某商店卖出两件衣服,每件60元,其中一件赚25%,另一件亏25%,那么这两件衣服卖出后,商店是 ( )
A.不赚不亏 B.赚8元 C.亏8元 D. 赚8元
9、下列方程中,是一元一次方程的是( )
(A) (B) (C) (D)
10、方程 的解是( )
(A) (B) (C) (D)
11、已知等式 ,则下列等式中不一定成立的是( )
(A) (B)
(C) (D)
12、方程 的解是 ,则 等于( )
(A) (B) (C) (D)
13、解方程 ,去分母,得( )
(A) (B)
(C) (D)
14、下列方程变形中,正确的是( )
(A)方程 ,移项,得
(B)方程 ,去括号,得
(C)方程 ,未知数系数化为1,得
(D)方程 化成
15、儿子今年12岁,父亲今年39岁,( )父亲的年龄是儿子的年龄的4倍.
(A)3年后; (B)3年前; (C)9年后; (D)不可能.
16、重庆力帆新感觉足球队训练用的足球是由32块黑白相间的牛皮缝制而成的,其中黑皮可看作正五边形,白皮可看作正六边形,黑、白皮块的数目比为3:5,要求出黑皮、白皮的块数,若设黑皮的块数为 ,则列出的方程正确的是( )
(A) (B)
(C) (D)
17、珊瑚中学修建综合楼后,剩有一块长比宽多5m、周长为50m的长方形空地. 为了美化环境,学校决定将它种植成草皮,已知每平方米草皮的种植成本最低是 元,那么种植草皮至少需用( )
(A) 元; (B) 元; (C) 元; (D) 元.
一年期 二年期 三年期
2.25 2.43 2.70
18、银行教育储蓄的年利率如右下表:
小明现正读七年级,今年7月他父母为他在银行存款30000元,以供3年后上高中使用. 要使3年后的收益最大,则小明的父母应该采用( )
(A)直接存一个3年期;
(B)先存一个1年期的,1年后将利息和自动转存一个2年期;
(C)先存一个1年期的,1年后将利息和自动转存两个1年期;
(D)先存一个2年期的,2年后将利息和自动转存一个1年期.
二. 填空题:
1、 ,则 ________.
2、已知 ,则 __________.
3、关于 的方程 的解是3,则 的值为________________.
4、现有一个三位数,其个位数为 ,十位上的数字为 ,百位数上的数字为 ,则这个三位数表示为__________________.
5、甲、乙两班共有学生96名,甲班比乙班多2人,则乙班有____________人.
6、某数的3倍比它的一半大2,若设某数为 ,则列方程为____.
7、当 ___时,代数式 与 的值互为相反数.
8、在公式 中,已知 ,则 ___.
日 一 二 三 四 五 六
1 2 3 4 5 6
7 8 9 10 11 12 13
14 15 16 17 18 19 20
21 22 23 24 25 26 27
28 29 30 31
9、如右图是2003年12月份的日历,现用一长方形在日历中任意框出4个数
,请用一个等式表示 之间的关系______________.
10、一根内径为3㎝的圆柱形长试管中装满了水,现把试管中的水逐渐滴入一个内径为8㎝、高为1.8㎝的圆柱形玻璃杯中,当玻璃杯装满水时,试管中的水的高度下降了____㎝.
11、国庆期间,“新世纪百货”搞换季打折. 简爽同学以8折的优惠价购买了一件运动服节省16元,那么他购买这件衣服实际用了___元.
12、成渝铁路全长504千米. 一辆快车以90千米/时的速度从重庆出发,1小时后,另有一辆慢车以48千米/时的速度从成都出发,则慢车出发__小时后两车相遇(沿途各车站的停留时间不计).
13、我们小时候听过龟兔赛跑的故事,都知道乌龟最后战胜了小白兔. 如果在第二次赛跑中,小白兔知耻而后勇,在落后乌龟1千米时,以101米/分的速度奋起直追,而乌龟仍然以1米/分的速度爬行,那么小白兔大概需要___分钟就能追上乌龟.
14、一年定期存款的年利率为1.98%,到期取款时须扣除利息的20%作为利息税上缴国库. 假若小颖存一笔一年定期储蓄,到期扣除利息税后实得利息158.4元,那么她存入的人民币是____元
15、52辆车排成两队,每辆车长a米,前后两车间隔3a/2米,车队平均每分钟行50米,这列车队通过长为546米的广场需要的时间是16分钟,则a=__________.
三、解方程:
1、 2、
3、 4、
5、 6、
7、 8、
9、已知 是方程 的根,求代数式 的值.
四、列方程解应用题:
1、敌军在离我军8千米的驻地逃跑,时间是早晨4点,我军于5点出发以每小时10千米的速度追击,结果在7点追上.求敌军逃跑时的速度是多少?
2、期中考查,信息技术课老师限时40分钟要求每位七年级学生打完一篇文章. 已知独立打完同样大小文章,小宝需要50分钟,小贝只需要30分钟. 为了完成任务,小宝打了30分钟后,请求小贝帮助合作,他能在要求的时间打完吗?
3、在学完“有理数的运算”后,实验中学七年级各班各选出5名学生组成一个代表队,在数学方老师的组织下进行一次知识竞赛. 竞赛规则是:每队都分别给出50道题,答对一题得3分,⑴ 如果二班代表队最后得分142分,那么二班代表队回答对了多少道题?⑵ 一班代表队的最后得分能为145分吗?请简要说明理由.
4、某“希望学校”修建了一栋4层的教学大楼,每层楼有6间教室,进出这栋大楼共有3道门(两道大小相同的正门和一道侧门). 安全检查中,对这3道门进行了测试:当同时开启一道正门和一道侧门时,2分钟内可以通过400名学生,若一道正门平均每分钟比一道侧门可多通过40名学生.
(1)求平均每分钟一道正门和一道侧门各可以通过多少名学生?
(2)检查中发现,紧急情况时因学生拥挤,出门的效率降低20%. 安全检查规定:在紧急情况下全大楼的学生应在5分钟内通过这3道门安全撤离. 假设这栋教学大楼每间教室最多有45名学生,问:建造的这3道门是否符合安全规定?为什么?
5、黑熊妈妈想检测小熊学习“列方程解应用题”的效果,给了小熊19个苹果,要小熊把它们分成4堆. 要求分后,如果再把第一堆增加一倍,第二堆增加一个,第三堆减少两个,第四堆减少一倍后,这4堆苹果的个数又要相同. 小熊捎捎脑袋,该如何分这19个苹果为4堆呢?
6、学校准备拿出2000元资金给22名“希望杯”竞赛获奖学生买奖品,一等奖每人200元奖品,二等奖每人50元奖品,求得到一等奖和二等奖的学生分别是多少人?
7、一家商店将某种商品按成本价提高40%后标价,元旦期间,欲打八折销售,以答谢新老顾客对本商厦的光顾,售价为224元,这件商品的成本价是多少元?
8、甲乙两人从学校到1000米远的展览馆去参观,甲走了5分钟后乙才出发,甲的速度是80米/分,乙的速度是180米/分,问乙多长时间能追上甲?追上甲时离展览馆还有多远?
较高要求:
1、已知 ,那么代数式 的值。
2、(2001年江苏省无锡市中考题)某商场根据市场信息,对商场中现有的两台不同型号的空调进行调价销售,其中一台空调调价后售出可获利10%(相对于进价),另一台空调调价后售出则亏本10%(相对于进价),而这两台空调调价后的售价恰好相同,那么商场把这两台空调调价后售出( ).
(A)既不获利也不亏本 (B)可获利1% (C)要亏本2% (D)要亏本1%
3、某开发商按照分期付款的形式售房,小明家购买了一套现价为12万元的新房,购房时需首付(第一年)款3万元,从第二年起,以后每年应付房款为5000元与上一年剩余欠款的利息之和。已知剩余款的年利率为0.4%,问第几年小明家需交房款5200元?
4、某牛奶加工厂现有鲜奶9吨,若在市场上直接销售鲜奶,每吨可获利润500元,若制成酸奶销售,每吨可获利润1200元;若制成奶片销售,每吨可获利润2000元.
方案一:尽可能多的制成奶片,其余直接销售鲜牛奶;
方案二:将一部分制成奶片,其余制成酸奶销售,并恰好4天完成;
(1)你认为选择哪种方案获利最多,为什么?
(2)本题解出之后,你还能提出哪些问题?若没解出,写出你存在的问题?
5、两辆汽车从同一地点同时出发,沿着同一方向同速直线行驶,每车最多只能带24桶汽油,途中不能用别的油,每桶油可使一辆车前进60公里,两车都必须返回出发地点,但是可以不同时返回,两车相互可借用对方的油。为了使其中一车尽可能地远离出发地点,另一辆车应当在离出发地点多少公里地方返回?离出发地点最远的那辆车一共行驶了多少公里?
展开全部
一,问题:1、用内经为90mm的圆柱型长玻璃杯(已装满水)向一个内底面积为131*131mm2,内高为81mm的长方体铁盒倒水,当铁盒装满水时,玻璃杯中水的高度下降多少?
2、一桶油连桶的重量为8kg,油用去一半后,连桶的重量4.5kg,桶内原来有油多少kg?
3、轮船在两个码头之间航行,顺水航行需要4小时,逆水航行需要5小时,水流的速度为2km/h,求轮船在静水中航行的速度。
4、一架飞机在两个城市之间,风速为24km/h,顺风飞行需要2小时50分,逆风飞行需要3小时,求两个城市之间的飞行路程。
答案:1\水杯下降的高度就是它倒到铁盒里的那部分水,两者何种是相等的,故设下降了XMM,可得方程:131*131*81=3.14*45*45*X
解得X=218.6MM
故下降了218.6MM
2\油用以前和以后桶的质量是不变的。故设原来有XKG油可得方程
8-X=4.5-x/2
解得X=7
所以原来有油7KG
3、两种航行等方式不变的是两地间的距离,可设静水中速度为X
则可得方程(X+2)*4=(X-2)*5
解得X=18
故在静水中速度为18KM/H
4、与上一题同理
设飞机本身速度是x千米每小时,可得方程
(x+24)*(2+5/6)=(X-24)*3
得X=840
两地距离为(X-24)*3=(840-24)3=2448KM
二,问题:1.再一次数学测验中,老师出了25道选择题,每个题都有四个选项,有且只有一个选项是正确的,老师的评分标准是:答对一道题给4分,不答或答错一题倒扣1分,问:
(1)一名同学得了90分,这位同学答对了几道题?
(2)一名同学得了60分,这位同学答对了几道题?
2.光明中学组织七年级师生春游,如果单租45座客车若干辆,则刚好坐满;如果单租60座的客车,可少租一辆,且余15个座位。
(1)求参加春游的师生总人数
(2)已知45座客车的租金为每天250元,60座客车的租金为每天300元,单
租哪种客车省钱?
(3)如果同时租用这两种客车,那么两种客车分别租多少辆最省钱?写出租车方案。
3.一张圆桌由一个桌面和四条腿组成,如果1m三次方,木料可制作圆桌的桌面50个,或制桌腿300条,现有5m三次方,木料,请你设计一下,用多少木料做桌腿,恰好配成圆桌多少张。
解答后请思考
(1)在建立一元一次方程模型解决实际问题的过程中要把握什么?
(2)解一元一次方程步骤有那些?
4.有一个三位数,其各数位的数字和是16,十位数字是个位数字和百位数字的和,如果把百位数字与个位数字对调,那么新数比原数大594,求原数。(一元一次解答)
5.把99拆成4个数,使第一个数加2,第二个数减2,第三个数乘2,第四个数除以2,得到结果都相等,应该怎样拆?
答案:1.(1)解:设该同学答对X道题,根据题意答错的为(25-X).
4*X-1*(25-X)=90
4*X-25+X=90
5*X=115
X=23
(2)解:设该同学答对X道题,根据题意答错的为(25-X).
4*X-1*(25-X)=60
4*X-25+X=60
5*X=85
X=17
2.根据题意设租45座客车为X辆可坐满,则需X-1辆60座的可余15空座.
45*X=60*(X-1)-15
45*X=60*X-60-15
15*X=75
X=5
(1)参加春游的总人数为45人*5辆=225人.
(2)45座的每天需要钱为250元*5辆=1250元,60座的每天需要钱为300元*(5-1)辆=1200元,所以租60座的较省钱.
(3)租3辆60座的1辆45座最划算,3*300+1*250=1150.
2、一桶油连桶的重量为8kg,油用去一半后,连桶的重量4.5kg,桶内原来有油多少kg?
3、轮船在两个码头之间航行,顺水航行需要4小时,逆水航行需要5小时,水流的速度为2km/h,求轮船在静水中航行的速度。
4、一架飞机在两个城市之间,风速为24km/h,顺风飞行需要2小时50分,逆风飞行需要3小时,求两个城市之间的飞行路程。
答案:1\水杯下降的高度就是它倒到铁盒里的那部分水,两者何种是相等的,故设下降了XMM,可得方程:131*131*81=3.14*45*45*X
解得X=218.6MM
故下降了218.6MM
2\油用以前和以后桶的质量是不变的。故设原来有XKG油可得方程
8-X=4.5-x/2
解得X=7
所以原来有油7KG
3、两种航行等方式不变的是两地间的距离,可设静水中速度为X
则可得方程(X+2)*4=(X-2)*5
解得X=18
故在静水中速度为18KM/H
4、与上一题同理
设飞机本身速度是x千米每小时,可得方程
(x+24)*(2+5/6)=(X-24)*3
得X=840
两地距离为(X-24)*3=(840-24)3=2448KM
二,问题:1.再一次数学测验中,老师出了25道选择题,每个题都有四个选项,有且只有一个选项是正确的,老师的评分标准是:答对一道题给4分,不答或答错一题倒扣1分,问:
(1)一名同学得了90分,这位同学答对了几道题?
(2)一名同学得了60分,这位同学答对了几道题?
2.光明中学组织七年级师生春游,如果单租45座客车若干辆,则刚好坐满;如果单租60座的客车,可少租一辆,且余15个座位。
(1)求参加春游的师生总人数
(2)已知45座客车的租金为每天250元,60座客车的租金为每天300元,单
租哪种客车省钱?
(3)如果同时租用这两种客车,那么两种客车分别租多少辆最省钱?写出租车方案。
3.一张圆桌由一个桌面和四条腿组成,如果1m三次方,木料可制作圆桌的桌面50个,或制桌腿300条,现有5m三次方,木料,请你设计一下,用多少木料做桌腿,恰好配成圆桌多少张。
解答后请思考
(1)在建立一元一次方程模型解决实际问题的过程中要把握什么?
(2)解一元一次方程步骤有那些?
4.有一个三位数,其各数位的数字和是16,十位数字是个位数字和百位数字的和,如果把百位数字与个位数字对调,那么新数比原数大594,求原数。(一元一次解答)
5.把99拆成4个数,使第一个数加2,第二个数减2,第三个数乘2,第四个数除以2,得到结果都相等,应该怎样拆?
答案:1.(1)解:设该同学答对X道题,根据题意答错的为(25-X).
4*X-1*(25-X)=90
4*X-25+X=90
5*X=115
X=23
(2)解:设该同学答对X道题,根据题意答错的为(25-X).
4*X-1*(25-X)=60
4*X-25+X=60
5*X=85
X=17
2.根据题意设租45座客车为X辆可坐满,则需X-1辆60座的可余15空座.
45*X=60*(X-1)-15
45*X=60*X-60-15
15*X=75
X=5
(1)参加春游的总人数为45人*5辆=225人.
(2)45座的每天需要钱为250元*5辆=1250元,60座的每天需要钱为300元*(5-1)辆=1200元,所以租60座的较省钱.
(3)租3辆60座的1辆45座最划算,3*300+1*250=1150.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
某公司向银行贷款40万元,用来生产某种新产品,已知该货的年利率事15%,(不计复利,即贷款前每年利息不重复记息),每个新产品的成本事2.3院,售价事4元,应纳税款为销售额的10%,如果每年生产该种产品20歌,并把所得的利润(利润=销售额-成本-应纳税款)用来归还货款,问:需几年后能一次还清?
如果两个长方形的长与宽的比均为2:1,大长方形的宽比小长方形的宽多3厘米大长方形的周长是小长方形的2倍,求这两个长方形的面积
一歌低面直径5厘米,高18厘米的圆柱内装满水,再将瓶内的水倒入一个低面直径为6厘米,高为10厘米的圆柱李,能否完全装下,若装不下,那么瓶内水面还有多高?若为能装满,求杯内水面李杯口的距离!!!
某班同学去18千米的北山郊游。只有一辆汽车,需分两组,甲组先乘车,乙组步行。车行至A处,甲组下车步行,车返回接乙组,最后两组同时到达北山。已知汽车速度是60km/h,步行速度是4km/h.求A点距北山的距离。
3牡丹杯足球赛11轮(即每个队均需比赛11场),胜一场得3分,平一场得一分,负一场得0分.国兴三高俱乐部队所胜场数是所负场数的4倍,结果共得25分,此次杯赛该球队胜\负\平各几场?
课外活动中一些同学分组参加活动,原来每组8人,后来重新编组,每组12人,这样比原来减少了2组,问这些同学共有多少人?
在地表上方10千米高空有一条高速风带.假设有两架速度相同的飞机在这个风带飞行,其中一架飞机从A地飞往B地,距离是4000米,需要6.5时;同时另一架飞机从B地飞到A地,只花5.2时.问飞机和风的平均速度各是多少?
6.一支队伍以5千米/小时的速度行进,20分钟后,一通讯员打的以15千米/小时的速度追赶队伍,那他多少小时后追上队伍?
一收割机每天收割小麦12公顷,割完麦地的2/3后,效率提高到原来的5/4倍,因此比预定时间提早1天完成,问麦地共有多少公顷?
设麦地有x公顷,因为已割完了2/3,所以还剩1/3,得方程:
甲、乙两人按2:5的比例投资开办了一家公司,约定出去各项支出外,所得利润按投资比例分成,若第一年赢利14000元,那么甲、乙两人分别应分得多少元?
民航规定:乘坐飞机普通舱旅客一人最多可免费携带20千克行李,超过部分每千克按飞机票价的15%购买行李票.一名旅客带了35千克行李乘机,机票连同行李票共付1323元,求该旅客的机票票价.
商店在销售二种售价一样的商品时,其中一件盈利25%,另一件亏损25%,卖这两件商品总的是盈利还是亏损?
一列火车通过一座长300米的铁桥,完全通过所用的时间为30秒,完全在桥上的时间为10秒,邱火车的车长以及它的速度。
某车间每天能生产甲种零件120个,或乙种零件100个,或丙种零件200个,甲,乙,丙三种零件分别取3个,2个,1个可配成一套。现要求在30天内生产出最多的成套产品,甲,乙,丙三种零件应该各安排生产多少天?
食堂运来面粉和大米各3袋。面粉每袋重25千克,大米每袋重50千克。运来面粉和大米一共多少千克?
民兵打靶,第一次用子弹250发,第二次用子弹320发,第三次比前两次的总和少180发,第三次用子弹多少发?
学校买彩色粉笔45盒,买的白粉笔比彩色粉笔多15盒。一共买多少盒粉笔?
一个空筐重2千克,往筐里放入32千克花生。装着花生的筐的重量是空筐的多少倍?
粮店运来两车面粉,每车装80袋,每袋25千克。这个粮店运来多少千克面粉?(用两种方法解答)
三年级同学到菜园收白菜,分成4组,每组11人,平均每人收45千克。一共收白菜多少千克?
化肥厂计划生产7200吨化肥,已经生产了4个月,平均每月生产化肥1200吨,余下的每月生产800吨,还要生产多少个月才能完成?
塑料厂计划生产1300件塑料模件,6天生产了780件。照这样计算,剩下的还要生产多少天才能完成?
李师傅上午4小时生产了252个零件,照这样的速度下午又工作3小时。李师傅这一天共生产零件多少件?
水泥厂计划生产水泥3600吨,用20天完成。实际每天比计划多生产20吨,实际多少天完成任务?
一堆煤3.6吨,计划可以烧10天,改进炉灶后,每天比原计划节约0.06吨,这堆煤现在可以烧多少天?
甲、乙两地相距420千米,一辆客车从甲地到乙地计划行使7小时。实际每小时比原计划多行使10千米,实际几小时到达?
小强从家回校上课,如果每分钟走50米,12分钟回到学校,如果每分钟多走10米,提前几分钟可以回到学校?
如果两个长方形的长与宽的比均为2:1,大长方形的宽比小长方形的宽多3厘米大长方形的周长是小长方形的2倍,求这两个长方形的面积
一歌低面直径5厘米,高18厘米的圆柱内装满水,再将瓶内的水倒入一个低面直径为6厘米,高为10厘米的圆柱李,能否完全装下,若装不下,那么瓶内水面还有多高?若为能装满,求杯内水面李杯口的距离!!!
某班同学去18千米的北山郊游。只有一辆汽车,需分两组,甲组先乘车,乙组步行。车行至A处,甲组下车步行,车返回接乙组,最后两组同时到达北山。已知汽车速度是60km/h,步行速度是4km/h.求A点距北山的距离。
3牡丹杯足球赛11轮(即每个队均需比赛11场),胜一场得3分,平一场得一分,负一场得0分.国兴三高俱乐部队所胜场数是所负场数的4倍,结果共得25分,此次杯赛该球队胜\负\平各几场?
课外活动中一些同学分组参加活动,原来每组8人,后来重新编组,每组12人,这样比原来减少了2组,问这些同学共有多少人?
在地表上方10千米高空有一条高速风带.假设有两架速度相同的飞机在这个风带飞行,其中一架飞机从A地飞往B地,距离是4000米,需要6.5时;同时另一架飞机从B地飞到A地,只花5.2时.问飞机和风的平均速度各是多少?
6.一支队伍以5千米/小时的速度行进,20分钟后,一通讯员打的以15千米/小时的速度追赶队伍,那他多少小时后追上队伍?
一收割机每天收割小麦12公顷,割完麦地的2/3后,效率提高到原来的5/4倍,因此比预定时间提早1天完成,问麦地共有多少公顷?
设麦地有x公顷,因为已割完了2/3,所以还剩1/3,得方程:
甲、乙两人按2:5的比例投资开办了一家公司,约定出去各项支出外,所得利润按投资比例分成,若第一年赢利14000元,那么甲、乙两人分别应分得多少元?
民航规定:乘坐飞机普通舱旅客一人最多可免费携带20千克行李,超过部分每千克按飞机票价的15%购买行李票.一名旅客带了35千克行李乘机,机票连同行李票共付1323元,求该旅客的机票票价.
商店在销售二种售价一样的商品时,其中一件盈利25%,另一件亏损25%,卖这两件商品总的是盈利还是亏损?
一列火车通过一座长300米的铁桥,完全通过所用的时间为30秒,完全在桥上的时间为10秒,邱火车的车长以及它的速度。
某车间每天能生产甲种零件120个,或乙种零件100个,或丙种零件200个,甲,乙,丙三种零件分别取3个,2个,1个可配成一套。现要求在30天内生产出最多的成套产品,甲,乙,丙三种零件应该各安排生产多少天?
食堂运来面粉和大米各3袋。面粉每袋重25千克,大米每袋重50千克。运来面粉和大米一共多少千克?
民兵打靶,第一次用子弹250发,第二次用子弹320发,第三次比前两次的总和少180发,第三次用子弹多少发?
学校买彩色粉笔45盒,买的白粉笔比彩色粉笔多15盒。一共买多少盒粉笔?
一个空筐重2千克,往筐里放入32千克花生。装着花生的筐的重量是空筐的多少倍?
粮店运来两车面粉,每车装80袋,每袋25千克。这个粮店运来多少千克面粉?(用两种方法解答)
三年级同学到菜园收白菜,分成4组,每组11人,平均每人收45千克。一共收白菜多少千克?
化肥厂计划生产7200吨化肥,已经生产了4个月,平均每月生产化肥1200吨,余下的每月生产800吨,还要生产多少个月才能完成?
塑料厂计划生产1300件塑料模件,6天生产了780件。照这样计算,剩下的还要生产多少天才能完成?
李师傅上午4小时生产了252个零件,照这样的速度下午又工作3小时。李师傅这一天共生产零件多少件?
水泥厂计划生产水泥3600吨,用20天完成。实际每天比计划多生产20吨,实际多少天完成任务?
一堆煤3.6吨,计划可以烧10天,改进炉灶后,每天比原计划节约0.06吨,这堆煤现在可以烧多少天?
甲、乙两地相距420千米,一辆客车从甲地到乙地计划行使7小时。实际每小时比原计划多行使10千米,实际几小时到达?
小强从家回校上课,如果每分钟走50米,12分钟回到学校,如果每分钟多走10米,提前几分钟可以回到学校?
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
1.用一根直径12厘米的圆柱体铅柱,铸造10只直径12厘米的铅球,问应该截取多长的铅柱?(球的体积为三分之四乘以3.14乘以R的立方)(列一元一次方程并解)
2.一个三位数,百位上的数字比十位上的数字大1,个位上的数字比十位上的数字的3倍少2,若将三个数字顺序颠倒后,所得的三位数与原三位数的和是1171,求这个三位数.
3.一年级三个班为希望小学捐赠图书,一班娟了152册,二班捐书数是三个班级的平均数,三班捐书数是年级捐书总数的40%,三个班共捐了多少图书? 4.某公路上一路段的道路维修工程准备对外招标,现有甲,乙两个工程竞标,竞标资料上显示:若单独完成此项工程,甲10天个可以完成,乙15天可完成,但甲队每天的工程费用比乙队多300元,若两队合作,共需要10200元工程指挥队决定从两队选一对单独完成,若从节省资金的角度来看,应该选哪个工程队? .5)一队学生步行去工厂参观,速度为5千米/时,当走了1小时后,一名学生回校取东西,他以7.5千米/时的速度回校,取了东西后立即以同样的速度追赶队伍,结果在离工厂2.5千米处追上队伍,求该校到工厂的路程..(列方程)
6.一种型号飞机贮油量允许在空中飞行的最长时间为11小时,飞机在静风中的速度是550千米/时,风速为50千米/时,那么这架飞机最远能飞多少千米就应返回?.(列方程)
7.小明在公路上行走,速度为6千米/时,一辆车身长为20米的汽车从小明背后驶来,经过小明旁边的时间为1.5秒,求汽车的速度..(列方程)
.轮船从甲地顺流而行9小时到达乙地,原路返回11小时才能到达甲地,已知水流速度为2千米/时,求甲乙两地的距离.(列方程)
8 地球上面面积约等于陆地面积的29分之71倍,地球的表面积约等于5.1亿平方公里,求地球上陆地面积是多少?(精确到0.1亿平方公里)
9内径为90毫米的圆柱形长玻璃杯(已装满水)向一个地面直径为131*131平方毫米,内高为81毫米的长方形铁盒到水,当铁盒装满水时,玻璃杯中水的高度下降多少?
10内径为120毫米的圆柱形玻璃杯,和内径为300毫米、内高为32毫米的圆柱形玻璃盘可以盛同样多的水,求玻璃杯的内高?
11将内径为200毫米的圆柱形水桶中的满桶水倒入一个内部长、宽、高分别为300毫米、300毫米、80毫米的长方形铁盒,正好倒满。求圆柱形水桶的水高?(精确到毫米。派取3.14)
12 两人水池共储存税40吨,甲池注进水4吨,乙池放水8吨,甲池中水的吨数就与乙池中水的吨数相等。两个水池原来各有水多少吨?
13某地下管道由甲工程队单独铺设需要12天,由乙工程队单独修设需要18天。如果有由两个工程队从两端同时想象施工,要多少天可以铺好?
2.一个三位数,百位上的数字比十位上的数字大1,个位上的数字比十位上的数字的3倍少2,若将三个数字顺序颠倒后,所得的三位数与原三位数的和是1171,求这个三位数.
3.一年级三个班为希望小学捐赠图书,一班娟了152册,二班捐书数是三个班级的平均数,三班捐书数是年级捐书总数的40%,三个班共捐了多少图书? 4.某公路上一路段的道路维修工程准备对外招标,现有甲,乙两个工程竞标,竞标资料上显示:若单独完成此项工程,甲10天个可以完成,乙15天可完成,但甲队每天的工程费用比乙队多300元,若两队合作,共需要10200元工程指挥队决定从两队选一对单独完成,若从节省资金的角度来看,应该选哪个工程队? .5)一队学生步行去工厂参观,速度为5千米/时,当走了1小时后,一名学生回校取东西,他以7.5千米/时的速度回校,取了东西后立即以同样的速度追赶队伍,结果在离工厂2.5千米处追上队伍,求该校到工厂的路程..(列方程)
6.一种型号飞机贮油量允许在空中飞行的最长时间为11小时,飞机在静风中的速度是550千米/时,风速为50千米/时,那么这架飞机最远能飞多少千米就应返回?.(列方程)
7.小明在公路上行走,速度为6千米/时,一辆车身长为20米的汽车从小明背后驶来,经过小明旁边的时间为1.5秒,求汽车的速度..(列方程)
.轮船从甲地顺流而行9小时到达乙地,原路返回11小时才能到达甲地,已知水流速度为2千米/时,求甲乙两地的距离.(列方程)
8 地球上面面积约等于陆地面积的29分之71倍,地球的表面积约等于5.1亿平方公里,求地球上陆地面积是多少?(精确到0.1亿平方公里)
9内径为90毫米的圆柱形长玻璃杯(已装满水)向一个地面直径为131*131平方毫米,内高为81毫米的长方形铁盒到水,当铁盒装满水时,玻璃杯中水的高度下降多少?
10内径为120毫米的圆柱形玻璃杯,和内径为300毫米、内高为32毫米的圆柱形玻璃盘可以盛同样多的水,求玻璃杯的内高?
11将内径为200毫米的圆柱形水桶中的满桶水倒入一个内部长、宽、高分别为300毫米、300毫米、80毫米的长方形铁盒,正好倒满。求圆柱形水桶的水高?(精确到毫米。派取3.14)
12 两人水池共储存税40吨,甲池注进水4吨,乙池放水8吨,甲池中水的吨数就与乙池中水的吨数相等。两个水池原来各有水多少吨?
13某地下管道由甲工程队单独铺设需要12天,由乙工程队单独修设需要18天。如果有由两个工程队从两端同时想象施工,要多少天可以铺好?
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
铁路旁的一条平行小路上,甲、乙两人同时向南行进,甲走路速度为3.6千米/时,乙骑自行车10.8千米/时,一列火车从他们背后开过来,火车经过甲用了22秒钟,经过乙用了26秒钟,这列火车的车身总长是多少米?
设这列火车每秒走x米。
3.6千米/时=1米/秒
10.8千米/时=3米/秒
(x-1)×22=(x-3)×26
x=14
(14-1)×22=286(米)
所以这列火车的车身总长是286米。
一队学生去军事训练,走到半路,队长有事要从队头通知到队尾,通讯员以18米/分的速度从队头至队尾又返回,已知队伍的行进速度为14米/分。问:若已知队长320米,则通讯员几分钟返回?若已知通讯员用了25分钟,则队长为多少米?
敌军在早晨5时从距我军7公里的驻地开始逃跑,我军在5时15分出发追击,速度是敌人的1.5倍,结果在7时45分追上,求我军追击的速度是多少?
甲骑自行车从A地到B地,乙骑自行车从B地到A地,两人都匀速前进.已知两人在上午8时同时出发,到上午100时,两人还相距36km,到中午12时,两人又相距36km.求A、B两地间的路程.
某学生由家到校上课,他先以每小时4千米的速度步行了全程的一半后,再搭上速度为20千米/时的顺路班车,所以比原来需要的时间早到了一小时,问他家到学校的距离是多少千米?
早上8点小明由A地出发,以每小时20千米的速度前往B地,15分钟后小刚也由A地出发,以每小时16千米的速度前往B地,小明到B地休息60分钟便返回A地,在返回途中,遇到由A地来的小刚,此时他们距B地2千米,求A、B两地距离?
甲、乙二人相距40公里,甲先出发1.5 小时,乙再出发,甲在后,乙在前,二人同向而行,甲的速度是每小时8公里,乙的速度是每小时6公里,求乙出发几小时后甲追上乙?
甲、乙二人分别在A,B两地,乙从B地到A地,出发1小时后,甲从A地出发,相向而行,在AB中点相遇,已知甲每小时走5千米,乙每小时走4千米,求AB两地的距离?
甲、乙二人同时从A地出发经过B地到C地,B,C之间的距离是2.5千米,甲的速度为每小时4千米,乙比甲每小时多走1千米,结果乙到C地的时间比甲到B的时间还提前半小时,求A,B两地的距离。
我们明天考数学叻..../
只给你做了一个
自己再想想
加油!~↖(^ω^)↗
更多看;
设这列火车每秒走x米。
3.6千米/时=1米/秒
10.8千米/时=3米/秒
(x-1)×22=(x-3)×26
x=14
(14-1)×22=286(米)
所以这列火车的车身总长是286米。
一队学生去军事训练,走到半路,队长有事要从队头通知到队尾,通讯员以18米/分的速度从队头至队尾又返回,已知队伍的行进速度为14米/分。问:若已知队长320米,则通讯员几分钟返回?若已知通讯员用了25分钟,则队长为多少米?
敌军在早晨5时从距我军7公里的驻地开始逃跑,我军在5时15分出发追击,速度是敌人的1.5倍,结果在7时45分追上,求我军追击的速度是多少?
甲骑自行车从A地到B地,乙骑自行车从B地到A地,两人都匀速前进.已知两人在上午8时同时出发,到上午100时,两人还相距36km,到中午12时,两人又相距36km.求A、B两地间的路程.
某学生由家到校上课,他先以每小时4千米的速度步行了全程的一半后,再搭上速度为20千米/时的顺路班车,所以比原来需要的时间早到了一小时,问他家到学校的距离是多少千米?
早上8点小明由A地出发,以每小时20千米的速度前往B地,15分钟后小刚也由A地出发,以每小时16千米的速度前往B地,小明到B地休息60分钟便返回A地,在返回途中,遇到由A地来的小刚,此时他们距B地2千米,求A、B两地距离?
甲、乙二人相距40公里,甲先出发1.5 小时,乙再出发,甲在后,乙在前,二人同向而行,甲的速度是每小时8公里,乙的速度是每小时6公里,求乙出发几小时后甲追上乙?
甲、乙二人分别在A,B两地,乙从B地到A地,出发1小时后,甲从A地出发,相向而行,在AB中点相遇,已知甲每小时走5千米,乙每小时走4千米,求AB两地的距离?
甲、乙二人同时从A地出发经过B地到C地,B,C之间的距离是2.5千米,甲的速度为每小时4千米,乙比甲每小时多走1千米,结果乙到C地的时间比甲到B的时间还提前半小时,求A,B两地的距离。
我们明天考数学叻..../
只给你做了一个
自己再想想
加油!~↖(^ω^)↗
更多看;
参考资料: http://zhidao.baidu.com/question/78162568.html?si=5
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询