非齐次线性方程组Ax= b的解的情况是什么
1个回答
展开全部
非齐次线性方程组的解的三种情况是只有零解,有非零解,有无穷多解。
非齐次线性方程组Ax=b的求解步骤:
(1)对增广矩阵B施行初等行变换化为行阶梯形。若R(A)<R(B),则方程组无解。
(2)若R(A)=R(B),则进一步将B化为行最简形。
(3)设R(A)=R(B)=r,把行最简形中r个非零行的非0首元所对应的未知数用其余n-r个未知数(自由未知数)表示,并令自由未知数分别等于C1,C2……Cn-r,即可写出含n-r个参数的通解。
线性化关系
在例子中(不是特例)变量y是x的函数,而且函数和方程的图像一致。
通常线性方程在实际应用中写作:
y=f(x)。
这里f有如下特性:
f(x+y)=f(x)+f(y)。
f(ax)=af(x)。
这里a不是向量。
一个函数如果满足这样的特性就叫做线性函数,或者更一般的,叫线性化。
因为线性的独特属性,在同类方程中对线性函数的解决有叠加作用。这使得线性方程最容易解决和推演。
上海华然企业咨询
2024-10-28 广告
2024-10-28 广告
上海华然企业咨询有限公司专注于AI与数据合规咨询服务。我们的核心团队来自头部互联网企业、红圈律所和专业安全服务机构。凭借深刻的AI产品理解、上百个AI产品的合规咨询和算法备案经验,为客户提供专业的算法备案、AI安全评估、数据出境等合规服务,...
点击进入详情页
本回答由上海华然企业咨询提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询