请教函数在x=0处连续是怎么理解的?

 我来答
小茗姐姐V
高粉答主

2023-08-12 · 关注我不会让你失望
知道大有可为答主
回答量:4.7万
采纳率:75%
帮助的人:6919万
展开全部

方法如下,请作参考:

若有帮助,请采纳。

轮看殊O
高粉答主

2023-08-09 · 说的都是干货,快来关注
知道大有可为答主
回答量:2.6万
采纳率:99%
帮助的人:743万
展开全部

y'=[ln(x+√(1+x²))]'

=1/(x+√(1+x²)) * [x+√(1+x²)]'

=1/(x+√(1+x²)) * [1+2x/2√(1+x²)]

=1/(x+√(1+x²)) * [1+x/√(1+x²)]

=1/(x+√(1+x²)) * [1√(1+x²)+x]/√(1+x²)

=1/√(1+x²)

可导,即设y=f(x)是一个单变量函数, 如果y在x=x0处左右导数分别存在且相等,则称y在x=x[0]处可导。如果一个函数在x0处可导,那么它一定在x0处是连续函数。


函数可导的条件:


如果一个函数的定义域为全体实数,即函数在其上都有定义。函数在定义域中一点可导需要一定的条件:函数在该点的左右导数存在且相等,不能证明这点导数存在。只有左右导数存在且相等,并且在该点连续,才能证明该点可导。


可导的函数一定连续;连续的函数不一定可导,不连续的函数一定不可导。

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式