在三角形ABC中,AB=AC=2,角A=90°,O为BC中点,动点E在BA边上自由移动
1,移动过程中三角形OEF是否能成为角EOF=45°的等腰三角形?能,请证明,不能说明理由,2,角EOF=45°时,设BE=y,CF=x,求之间的函数解析式,写出x的取值...
1,移动过程中三角形OEF是否能成为角EOF=45°的等腰三角形?能,请证明,不能说明理由,
2,角EOF=45°时,设BE=y,CF=x,求之间的函数解析式,写出x的取值范围。
拜托!!!!!
F在AC边上自由移动!! 展开
2,角EOF=45°时,设BE=y,CF=x,求之间的函数解析式,写出x的取值范围。
拜托!!!!!
F在AC边上自由移动!! 展开
3个回答
展开全部
21.如图12-1所示,在 △ABC中,AB=AC=2 ,角A=90° ,O 为BC 的中点,动点E 在BA 边上自由移动,动点F 在AC 边上自由移动.
(1)点E,F 的移动过程中, △OEF是否能成为角EOF=45° 的等腰三角形?若能,请指出△OEF 为等腰三角形时动点 E,F的位置.若不能,请说明理由.
只要BE=AF即可
(2)当角EOF=45°时,设BE=X ,CF=Y ,求 Y与 X之间的函数解析式,写出 X的取值范围.
Y=2-X (0<=X<=2)
(3)在满足(2)中的条件时,若以 O为圆心的圆与 AB相切(如图12-2),试探究直线EF 与O 的位置关系,并证明你的结论.
相切或相割
证明:圆半径=1
当BE=0或2时 相切
当BE不=0或2时,做OD垂直EF于D,则OD=OE/根号2<1,即相割
(1)点E,F 的移动过程中, △OEF是否能成为角EOF=45° 的等腰三角形?若能,请指出△OEF 为等腰三角形时动点 E,F的位置.若不能,请说明理由.
只要BE=AF即可
(2)当角EOF=45°时,设BE=X ,CF=Y ,求 Y与 X之间的函数解析式,写出 X的取值范围.
Y=2-X (0<=X<=2)
(3)在满足(2)中的条件时,若以 O为圆心的圆与 AB相切(如图12-2),试探究直线EF 与O 的位置关系,并证明你的结论.
相切或相割
证明:圆半径=1
当BE=0或2时 相切
当BE不=0或2时,做OD垂直EF于D,则OD=OE/根号2<1,即相割
展开全部
解:(1)点E,F移动的过程中,△OEF能成为∠EOF=45°的等腰三角形,
①当OE=EF时,∠OEF是直角,F,A重合,OE是三角形ABC的中位线,E是AB中点,
②当OF=EF时,∠OFE是直角,与①同理,E,A重合,F是AC中点,
③当OE=OF时,如果连接OA,那么OA必然平分∠BAC,
∴BO=CO,∠B=∠C=45°,EO=FO,
因为∠EOF=45°,
∴∠BOE+∠COF=∠BOE+∠BEO=135°,
∴∠COF=∠BEO,
∴△BEO≌△COF,
∴BE=CO=BC,
∵AB=AC=2,
∴BC=2 ,由此可得出BE=CF=.
(2)在△OEB和△FOC中,
∵∠EOB+∠FOC=135°,∠EOB+∠OEB=135°,
∴∠FOC=∠OEB,
又∵∠B=∠C,
∴△OEB∽△FOC,
∴=,
∵BE=x,CF=y,OB=OC==,
∴y=(1≤x≤2).
①当OE=EF时,∠OEF是直角,F,A重合,OE是三角形ABC的中位线,E是AB中点,
②当OF=EF时,∠OFE是直角,与①同理,E,A重合,F是AC中点,
③当OE=OF时,如果连接OA,那么OA必然平分∠BAC,
∴BO=CO,∠B=∠C=45°,EO=FO,
因为∠EOF=45°,
∴∠BOE+∠COF=∠BOE+∠BEO=135°,
∴∠COF=∠BEO,
∴△BEO≌△COF,
∴BE=CO=BC,
∵AB=AC=2,
∴BC=2 ,由此可得出BE=CF=.
(2)在△OEB和△FOC中,
∵∠EOB+∠FOC=135°,∠EOB+∠OEB=135°,
∴∠FOC=∠OEB,
又∵∠B=∠C,
∴△OEB∽△FOC,
∴=,
∵BE=x,CF=y,OB=OC==,
∴y=(1≤x≤2).
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
F?
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询