一道关于初中数学因式分解的题目。
今天碰到了难题:因式分解:444X+Y+(X+Y)如果看不懂算式,请看语言叙述:X的4次方加上Y的4次方再加上X与Y的和的4次方。哪位初中数学巨棒的高人可以给我指点一下?...
今天碰到了难题:因式分解:
4 4 4
X +Y +(X+Y)
如果看不懂算式,请看语言叙述:X的4次方加上Y的4次方再加上X与Y的和的4次方。
哪位初中数学巨棒的高人可以给我指点一下?要有解答的过程,若过程不易理解,希望可以附上文字讲解!
感激不尽! 展开
4 4 4
X +Y +(X+Y)
如果看不懂算式,请看语言叙述:X的4次方加上Y的4次方再加上X与Y的和的4次方。
哪位初中数学巨棒的高人可以给我指点一下?要有解答的过程,若过程不易理解,希望可以附上文字讲解!
感激不尽! 展开
13个回答
展开全部
解:原式=(X^2)^2+(Y^2)^2+(X+Y)^4
=(X^2+Y^2)^2-2(XY)^2+(X+Y)^4
=((X+Y)^2-2XY)^2-2(XY)^2+(X+Y)^4
设X+Y=Z
原式=(Z-2XY)^2-2(XY)^2+(Z)^4
=(Z^4-4XYZ^2+4(XY)^2)-2(XY)^2+(Z)^4
=2Z^4-4XYZ^2+2(XY)^2
=2(Z^4-2XYZ^2+(XY)^2)
=2((Z^2)^2-2XYZ^2+(XY)^2)
=2(Z^2-XY)^2
=2((X+Y)^2-XY)^2
=2(X^2+Y^2+XY)^2
如果有不明白的你可以补充说明,我看见拉就回答。
=(X^2+Y^2)^2-2(XY)^2+(X+Y)^4
=((X+Y)^2-2XY)^2-2(XY)^2+(X+Y)^4
设X+Y=Z
原式=(Z-2XY)^2-2(XY)^2+(Z)^4
=(Z^4-4XYZ^2+4(XY)^2)-2(XY)^2+(Z)^4
=2Z^4-4XYZ^2+2(XY)^2
=2(Z^4-2XYZ^2+(XY)^2)
=2((Z^2)^2-2XYZ^2+(XY)^2)
=2(Z^2-XY)^2
=2((X+Y)^2-XY)^2
=2(X^2+Y^2+XY)^2
如果有不明白的你可以补充说明,我看见拉就回答。
展开全部
x^4+y^4+(x+y)^4
=(x^2+y^2)^2-2x^2y^2+(x+y)^4
=[(x+y)^2-2xy]^2-2x^2y^2+(x+y)^4
=[(x+y)^2]^2-4xy(x+y)^2+4x^2y^2- 2x^2y^2+(x+y)^4
=2(x+y)^4-4xy(x+y)^2+2x^2y^2
=2[(x+y)^4-2xy(x+y)^2+(xy)^2]
=2(x^2+xy+y^2)^2
...好像不分解的式子还漂亮一点
=(x^2+y^2)^2-2x^2y^2+(x+y)^4
=[(x+y)^2-2xy]^2-2x^2y^2+(x+y)^4
=[(x+y)^2]^2-4xy(x+y)^2+4x^2y^2- 2x^2y^2+(x+y)^4
=2(x+y)^4-4xy(x+y)^2+2x^2y^2
=2[(x+y)^4-2xy(x+y)^2+(xy)^2]
=2(x^2+xy+y^2)^2
...好像不分解的式子还漂亮一点
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解:原式=(x^2+y^2)^2-2x^2y^2+(x+y)^4
=[(x+y)^2-2xy]^2-2x^2y^2+(x+y)^4
=[(x+y)^2]^2-4xy(x+y)^2+4x^2y^2- 2x^2y^2+(x+y)^4
=2(x+y)^4-4xy(x+y)^2+2x^2y^2
=2[(x+y)^4-2xy(x+y)^2+(xy)^2]
=2[(x+y)^2-xy]^2
=2(x^2+xy+y^2)^2
=[(x+y)^2-2xy]^2-2x^2y^2+(x+y)^4
=[(x+y)^2]^2-4xy(x+y)^2+4x^2y^2- 2x^2y^2+(x+y)^4
=2(x+y)^4-4xy(x+y)^2+2x^2y^2
=2[(x+y)^4-2xy(x+y)^2+(xy)^2]
=2[(x+y)^2-xy]^2
=2(x^2+xy+y^2)^2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
原式=(x^2+y^2)^2-2x^2y^2+(x+y)^4
=[(x+y)^2-2xy]^2-2x^2y^2+(x+y)^4
=[(x+y)^2]^2-4xy(x+y)^2+4x^2y^2- 2x^2y^2+(x+y)^4
=2(x+y)^4-4xy(x+y)^2+2x^2y^2
=2[(x+y)^4-2xy(x+y)^2+(xy)^2]
=2[(x+y)^2-xy]^2
=2(x^2+xy+y^2)^2
=[(x+y)^2-2xy]^2-2x^2y^2+(x+y)^4
=[(x+y)^2]^2-4xy(x+y)^2+4x^2y^2- 2x^2y^2+(x+y)^4
=2(x+y)^4-4xy(x+y)^2+2x^2y^2
=2[(x+y)^4-2xy(x+y)^2+(xy)^2]
=2[(x+y)^2-xy]^2
=2(x^2+xy+y^2)^2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
参见其他解答,方法基本一致,我就不赘述了
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
把原式先加上和减去一个2倍个XY的平方,前面可以变成X和Y的平方和的完全平方,这样再把-2倍个XY的平方拆成两个负XY的平方,分别和前后用平方差公式,再计算化简后,你会发现他们前后是有公因式的了
(X和Y的和的4方,可以看成X和Y的和的平方的平方)
(X和Y的和的4方,可以看成X和Y的和的平方的平方)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询