
跪求高数高手可降阶的二阶微分方程 y’’=f(x,y’)型的微分方程
y’’(1+e^x)+y’=0(1+x^2)y’’+2xy’=x^3麻烦求一下上面两个的通解有个答案即可我只是对一下有心人写一点过程也行,不过太长了还是给个答案实际给个答...
y’’(1+e^x)+y’=0
(1+x^2)y’’+2xy’=x^3
麻烦求一下上面两个的 通解 有个答案即可 我只是对一下
有心人 写一点过程也行,不过太长了 还是给个答案实际 给个答案发现不对 我们再讨论 展开
(1+x^2)y’’+2xy’=x^3
麻烦求一下上面两个的 通解 有个答案即可 我只是对一下
有心人 写一点过程也行,不过太长了 还是给个答案实际 给个答案发现不对 我们再讨论 展开
展开全部
因为:y1,y2,y3线性无关,
所以:y1-y3,y2-y3是线性无关的.
又因为:函数y1,y2,y3都是二阶非齐次线性方程y″+p(x)y′+q(x)y=f(x)的解,
所以:c1(y1-y3)+c2(y2-y3)是y″+p(x)y′+q(x)y=0的通解,
根据二阶线性非齐次微分方程的结构可知:
c1(y1-y3)+c2(y2-y3)+y3=c1y1+c2y2+(1-c1-c2)y3是y″+p(x)y′+q(x)y=f(x)的通解
故该非齐次方程的通解是c1y1+c2y2+(1-c1-c2)y3
其中c1、c2为任意常数
所以:y1-y3,y2-y3是线性无关的.
又因为:函数y1,y2,y3都是二阶非齐次线性方程y″+p(x)y′+q(x)y=f(x)的解,
所以:c1(y1-y3)+c2(y2-y3)是y″+p(x)y′+q(x)y=0的通解,
根据二阶线性非齐次微分方程的结构可知:
c1(y1-y3)+c2(y2-y3)+y3=c1y1+c2y2+(1-c1-c2)y3是y″+p(x)y′+q(x)y=f(x)的通解
故该非齐次方程的通解是c1y1+c2y2+(1-c1-c2)y3
其中c1、c2为任意常数
展开全部
第1道,设y'=u,则u'(1+e^x)=-u,
解du/u=-dx/(1+e^x)
得lnu=ln(1+e^x)-x+C1,
即u=e^C1(1+e^x)/e^x=e^(C1-x)+e^C1.
所以y=∫udx=[1/(C1-x)]e^(C1-x)+(e^C1)x+C2.
第2道,设y'=u,则u'+2xu/(1+x^2)=x^3/(1+x^2)
积分因子M(x)=1+x^2.
所以(1+x^2)u=∫x^3dx
解得u=[(x^4)/4+C1]/(1+x^2)
故y=∫udx=(x^3)/12-x/4+(C1+1/4)*arctan(x)+C2.
解du/u=-dx/(1+e^x)
得lnu=ln(1+e^x)-x+C1,
即u=e^C1(1+e^x)/e^x=e^(C1-x)+e^C1.
所以y=∫udx=[1/(C1-x)]e^(C1-x)+(e^C1)x+C2.
第2道,设y'=u,则u'+2xu/(1+x^2)=x^3/(1+x^2)
积分因子M(x)=1+x^2.
所以(1+x^2)u=∫x^3dx
解得u=[(x^4)/4+C1]/(1+x^2)
故y=∫udx=(x^3)/12-x/4+(C1+1/4)*arctan(x)+C2.
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询