已知数列an满足a1=4 an=4-4/an-1(n大于等于2) 求证bn是等差数列 求数列an的通项公式
2个回答
展开全部
an+1=4-(4/an)
a(n+1)-2=2- 4/an
b(n+1)=1/(a(n+1)-2)=1/(2-4/an)=an/(2an-4)=an/2(an-2)
bn=1/(an-2)
所以:b(n+1)-bn=[1/(an-2)]*(an-2)/2=1/2
所以数列{bn}是等差数列
2
bn=1/(an-2)为等差数列,首项b1=1/(a1-2)=1/2
公差为1/2
所以:bn=1/2+(1/2)*(n-1)=n/2
所以1/(an-2)=n/2
an-2=2/n
an=2+2/n
当n=1时也成立!
所以数列{an}的通项公式为an=2+2/n
a(n+1)-2=2- 4/an
b(n+1)=1/(a(n+1)-2)=1/(2-4/an)=an/(2an-4)=an/2(an-2)
bn=1/(an-2)
所以:b(n+1)-bn=[1/(an-2)]*(an-2)/2=1/2
所以数列{bn}是等差数列
2
bn=1/(an-2)为等差数列,首项b1=1/(a1-2)=1/2
公差为1/2
所以:bn=1/2+(1/2)*(n-1)=n/2
所以1/(an-2)=n/2
an-2=2/n
an=2+2/n
当n=1时也成立!
所以数列{an}的通项公式为an=2+2/n
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询