初二上册数学题:如图1,在△ABC中,AB=AC,AD⊥BC于点D,点E在AD上。 (1)求证:BE=CE (2)如图2,若BE的
初二上册数学题:如图1,在△ABC中,AB=AC,AD⊥BC于点D,点E在AD上。(1)求证:BE=CE(2)如图2,若BE的延长线交AC于点F,且BF⊥AC,垂足为F,...
初二上册数学题:如图1,在△ABC中,AB=AC,AD⊥BC于点D,点E在AD上。
(1)求证:BE=CE
(2)如图2,若BE的延长线交AC于点F,且BF⊥AC,垂足为F,∠BAC=45°,原题设其他条件不变,试探索AE与BD的数量关系,并证明你的结论 展开
(1)求证:BE=CE
(2)如图2,若BE的延长线交AC于点F,且BF⊥AC,垂足为F,∠BAC=45°,原题设其他条件不变,试探索AE与BD的数量关系,并证明你的结论 展开
2个回答
展开全部
1、∵AD⊥BC
∴△ABD和△ACD是直角△
∵AB=AC
AD=AD
∴RT△ABD≌RT△ACD(HL)
∴∠BAD=∠CAD,BD=CD=1/2BC
即∠BAE=∠CAE
∵AB=AC
AE=AE
∴△ABE≌△ACE(SAS)
BE=CE
2、∵BF⊥AC,∠BAC=∠BAF=45°
∴△ABF是等腰直角△
∴∠ABF=∠BAF=45°
AF=BF
∵∠BAD=∠CAD=1/2∠BAC=1/2×45°=22.5°
∴∠ABD=90°-∠BAD=90°-22.5°=67.5
∴∠CBF=∠ABD-∠ABF=67.5-45=22.5°
∴∠CAD=∠CBF=22.5°
在RT△AEF和RT△BCF中
∠FAE=∠CAD=∠CBF
∠EFA=∠BFC=90°
AF=BF
∴RT△AEF≌RT△BCF(ASA)
∴AE=BC
∵BD=1/2BC
∴BD=1/2AE
∴△ABD和△ACD是直角△
∵AB=AC
AD=AD
∴RT△ABD≌RT△ACD(HL)
∴∠BAD=∠CAD,BD=CD=1/2BC
即∠BAE=∠CAE
∵AB=AC
AE=AE
∴△ABE≌△ACE(SAS)
BE=CE
2、∵BF⊥AC,∠BAC=∠BAF=45°
∴△ABF是等腰直角△
∴∠ABF=∠BAF=45°
AF=BF
∵∠BAD=∠CAD=1/2∠BAC=1/2×45°=22.5°
∴∠ABD=90°-∠BAD=90°-22.5°=67.5
∴∠CBF=∠ABD-∠ABF=67.5-45=22.5°
∴∠CAD=∠CBF=22.5°
在RT△AEF和RT△BCF中
∠FAE=∠CAD=∠CBF
∠EFA=∠BFC=90°
AF=BF
∴RT△AEF≌RT△BCF(ASA)
∴AE=BC
∵BD=1/2BC
∴BD=1/2AE
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询