如图,线段AB在平面α内,线段AC垂直α,线段BD垂直AB,且AB=7,AC=BD=24,CD=25,求线段BD与平面α所成的角
1个回答
展开全部
做DE⊥α与E,连接BE,AE,做DF//AE交AC于F假设DE=X,
在直角三角形BDE中
BE的平方=24的平方-X的平方=24^2-X^2
在直角三角形ABE中,
AE的平方=7^2+24^2-X^2
可以知道AEDF是矩形
所以AF=DE=X,DF的平方=AE的平方=7^2+24^2-X^2
又CF=CA-FA=24-X
所以在直角三角形CDF中
(24-X)^2+7^2+24^2-X^2=25^2得到X=12因为DE⊥α所以角DBE就是线段BD与平面α所成的角
角DBE的正玄=X/24=12/24=1/2
所以角DBE是30度
线段BD与平面α所成的角是30度
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询