一道几何题.急求。
四边形ABCD的对边BA,CD延长后交于G点,E,F分别是BD,AC的中点。求证:S△EFG=1/4S四边形ABCD...
四边形ABCD的对边BA,CD延长后交于G点,E,F分别是BD,AC的中点。求证:S△EFG=1/4S四边形ABCD
展开
1个回答
展开全部
连接AE,CE,DF,则S四边形ABCD=S△ABD+S△CBD
=2S△AED+2S△CED=2(S△EAC+S△DAC)
=2(2S△EAF+2S△DAF)=4S四边形AEFD
记AD分别交AE,AF为P,Q,AD中点为M,连接EM,FM,GM
则FM//CD,∴S△DMF=S△GMF
∴S△DQF=S△DMF-S△QMF=S△GMF-S△QMF=S△GQM
同理EM//AB,∴有S△APE=S△GPM
∴S四边形AEFD=S△APE+S四边形PQFE+S△DQF
=S△GPM+S四边形PQFE+S△GQM=S△GEF
即S四边形ABCD=4S四边形AEFD=4S△GEF
=2S△AED+2S△CED=2(S△EAC+S△DAC)
=2(2S△EAF+2S△DAF)=4S四边形AEFD
记AD分别交AE,AF为P,Q,AD中点为M,连接EM,FM,GM
则FM//CD,∴S△DMF=S△GMF
∴S△DQF=S△DMF-S△QMF=S△GMF-S△QMF=S△GQM
同理EM//AB,∴有S△APE=S△GPM
∴S四边形AEFD=S△APE+S四边形PQFE+S△DQF
=S△GPM+S四边形PQFE+S△GQM=S△GEF
即S四边形ABCD=4S四边形AEFD=4S△GEF
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询