设数列{an}的前n项和为Sn,已知首项a1=3,且Sn+1+Sn=2an+1,试求此数列的通项公式an及前n项和Sn

qrr1179853757
2014-08-06 · TA获得超过6467个赞
知道小有建树答主
回答量:1144
采纳率:100%
帮助的人:550万
展开全部
S(n+1)+S(n)=2a(n)+1
S(n)+S(n-1)=2a(n-1)+1
两式相减
s(n+1)-s(n-1)=a(n+1)+a(n)=2a(n)-2a(n-1)
整理后有a(n+1)-a(n)+2a(n-1)=0
用特征根法可解得
a(n)=b[(1+√7i)/2]^n+c[(1-√7i)/2]^n,其中b、c为常数,i为虚数单位。又
s(2)+s(1)=2a(1)+a(2)=2a(1)+1,故a(2)=1
将a(1)=3,a(2)=1代入a(n)=b[(1+√7i)/2]^n+c[(1-√7i)/2]^n可解得
b=(7-5√7i)/14 c=(7+5√7i)/14 故
a(n)=[(7-5√7i)/14]*[(1+√7i)/2]^n+[(7+5√7i)/14]*[(1-√7i)/2]^n
现在求s(n)
S(n+1)+S(n)=2[s(n)-s(n-1)]+1
S(n+1)-S(n)+2s(n-1)=1
S(n)-S(n-1)+2s(n-2)=1
两式相减整理后有
S(n+1)-2S(n)+3s(n-1)-2s(n-2)=0
用特征法解得
s(n)=[(7+11√7i)/28]*[(1+√7i)/2]^n+[(-21-11√7i)/28]*[(1-√7i)/2]^n+(12-√7i)/2
不懂可追问,有帮助请采纳,谢谢!
尹六六老师
推荐于2016-10-26 · 知道合伙人教育行家
尹六六老师
知道合伙人教育行家
采纳数:33772 获赞数:147242
百强高中数学竞赛教练, 大学教案评比第一名, 最受学生欢迎教

向TA提问 私信TA
展开全部

n≥2时

S(n+1)+S(n)=2a(n+1)

S(n+1)-S(n)=a(n+1)

∴  S(n+1)=1.5a(n+1)

∴  S(n)=1.5a(n)

∴  a(n+1)=S(n+1)-S(n)=1.5a(n+1)-1.5a(n)

∴  a(n+1)=3a(n)

S(1)=a(1)=3

解得,a(2)=6

所以,n≥2时,a(n)=2·3的n-1次方


综上:

a(n)=2·3的n-1次方   (n≥2时)

a(n)=3                      (n=1时)

本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式