∫√(9-4x²)dx
3个回答
展开全部
令x=(3/2)sint,则t=arcsin(⅔x)
∫√(9-4x²)dx
=∫√[9-4·(3sint/2)²]d[(3/2)sint]
=∫3cost·(3/2)costdt
=(9/4)∫2cos²tdt
=(9/4)∫(1+cos2t)dt
=(9/4)(t+½sin2t) +C
=(9/4)(t+sintcost) +C
=(9/4)[arcsin(⅔x)+⅔x·√(9-4x²)/3] +C
=(9/4)arcsin(⅔x)+ ½x·√(9-4x²) +C
∫√(9-4x²)dx
=∫√[9-4·(3sint/2)²]d[(3/2)sint]
=∫3cost·(3/2)costdt
=(9/4)∫2cos²tdt
=(9/4)∫(1+cos2t)dt
=(9/4)(t+½sin2t) +C
=(9/4)(t+sintcost) +C
=(9/4)[arcsin(⅔x)+⅔x·√(9-4x²)/3] +C
=(9/4)arcsin(⅔x)+ ½x·√(9-4x²) +C
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询