求不定积分∫(1/cosx)dx
书里解题是=∫dx/sin(x+π/2)=ln|tan(x/2+π/4)|+c我搞不清这题的公式是怎么转变的?cosx怎么变成了sin(x+π/2),sin(x+π/2)...
书里解题是=∫dx/sin(x+π/2)=ln|tan(x/2+π/4)|+c
我搞不清这题的公式是怎么转变的?
cosx怎么变成了sin(x+π/2),sin(x+π/2)又怎么积分成最后的答案lntan? 展开
我搞不清这题的公式是怎么转变的?
cosx怎么变成了sin(x+π/2),sin(x+π/2)又怎么积分成最后的答案lntan? 展开
3个回答
展开全部
sin(x+π/2)=sinxcosπ/2+cosxsinπ/2=cosx
∫dx/sin(x+π/2)=∫dx/[2sin(x/2+π/4)cos(x/2+π/4)]
=∫cos(x/2+π/4)dx/[2sin(x/2+π/4)[cos(x/2+π/4)]^2]
=2∫dsin(x/2+π/4)/[2sin(x/2+π/4)[1-[sin(x/2+π/4)]^2]](令sin(x/2+π/4)=t)
=∫dt/[t(1-t^2)]
=∫dt/t+∫t*dt/(1-t^2)
=ln|t|-(1/2)*∫d(1-t^2)/(1-t^2)
=ln|t|-(1/2)*ln|1-t^2|+C
=ln(t/(1-t^2)^(1/2))+C
将sin(x/2+π/4)带入
得
ln|tan(x/2+π/4)|+c
∫dx/sin(x+π/2)=∫dx/[2sin(x/2+π/4)cos(x/2+π/4)]
=∫cos(x/2+π/4)dx/[2sin(x/2+π/4)[cos(x/2+π/4)]^2]
=2∫dsin(x/2+π/4)/[2sin(x/2+π/4)[1-[sin(x/2+π/4)]^2]](令sin(x/2+π/4)=t)
=∫dt/[t(1-t^2)]
=∫dt/t+∫t*dt/(1-t^2)
=ln|t|-(1/2)*∫d(1-t^2)/(1-t^2)
=ln|t|-(1/2)*ln|1-t^2|+C
=ln(t/(1-t^2)^(1/2))+C
将sin(x/2+π/4)带入
得
ln|tan(x/2+π/4)|+c
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
可以上下乘以cosx
∫(1/cosx)dx=∫cosxdx/(cosx)^2=∫dsinx/(1-sinx*sinx)
这样就简单了~
∫(1/cosx)dx=∫cosxdx/(cosx)^2=∫dsinx/(1-sinx*sinx)
这样就简单了~
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
这是因为∫(1/sinx)dx有一个现成的公式可用
∫(1/sinx)dx
=∫dx/[2sin(x/2)cos(x/2)]
=1/2*∫[(secx/2)^2/tan(x/2)]dx
=∫dtan(x/2)/tan(x/2)=ln|tan(x/2)|+C
∫(1/sinx)dx
=∫dx/[2sin(x/2)cos(x/2)]
=1/2*∫[(secx/2)^2/tan(x/2)]dx
=∫dtan(x/2)/tan(x/2)=ln|tan(x/2)|+C
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询