已知等差数列{an}的首项a1=3,且公差d≠0,其前n项和为Sn,且a1,a4,a13分别是等比数列{bn}的b2,b3,b4
已知等差数列{an}的首项a1=3,且公差d≠0,其前n项和为Sn,且a1,a4,a13分别是等比数列{bn}的b2,b3,b4.(Ⅰ)求数列{an}与{bn}的通项公式...
已知等差数列{an}的首项a1=3,且公差d≠0,其前n项和为Sn,且a1,a4,a13分别是等比数列{bn}的b2,b3,b4.(Ⅰ)求数列{an}与{bn}的通项公式;(Ⅱ)证明13≤1S1+1S2+…+1Sn<34.
展开
1个回答
展开全部
解答:(Ⅰ)解:设等比数列的公比为q,则
∵a1,a4,a13分别是等比数列{bn}的b2,b3,b4.
∴(a1+3d)2=a1(a1+12d)
∵a1=3,∴d2-2d=0
∴d=2或d=0(舍去)
∴an=3+2(n-1)=2n+1
∵q=
=
=3,b1=
=1
∴bn=3n-1;
(Ⅱ)证明:由(Ⅰ)知Sn=n2+2n
∴
=
=
(
?
)
∴
+
+…+
=
[(1?
)+(
?
)+…+(
?
)]=
(1+
?
?
)
=
?
(
+
)<
∵
+
≤
+
=
∴
?
(
+
)≥
∴
≤
+
+…+
<
∵a1,a4,a13分别是等比数列{bn}的b2,b3,b4.
∴(a1+3d)2=a1(a1+12d)
∵a1=3,∴d2-2d=0
∴d=2或d=0(舍去)
∴an=3+2(n-1)=2n+1
∵q=
b3 |
b2 |
a4 |
a1 |
b2 |
q |
∴bn=3n-1;
(Ⅱ)证明:由(Ⅰ)知Sn=n2+2n
∴
1 |
Sn |
1 |
n(n+2) |
1 |
2 |
1 |
n |
1 |
n+2 |
∴
1 |
S1 |
1 |
S2 |
1 |
Sn |
1 |
2 |
1 |
3 |
1 |
2 |
1 |
4 |
1 |
n |
1 |
n+2 |
1 |
2 |
1 |
2 |
1 |
n+1 |
1 |
n+2 |
=
3 |
4 |
1 |
2 |
1 |
n+1 |
1 |
n+2 |
3 |
4 |
∵
1 |
n+1 |
1 |
n+2 |
1 |
2 |
1 |
3 |
5 |
6 |
∴
3 |
4 |
1 |
2 |
1 |
n+1 |
1 |
n+2 |
1 |
3 |
∴
1 |
3 |
1 |
S1 |
1 |
S2 |
1 |
Sn |
3 |
4 |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询