若函数f(x)满足:“对于区间(1,2)上的任意实数x1,x2(x1≠x2),|f(x2)-f(x1)|<|x2-x1|恒成立

若函数f(x)满足:“对于区间(1,2)上的任意实数x1,x2(x1≠x2),|f(x2)-f(x1)|<|x2-x1|恒成立”,则称f(x)为完美函数.在下列四个函数中... 若函数f(x)满足:“对于区间(1,2)上的任意实数x1,x2(x1≠x2),|f(x2)-f(x1)|<|x2-x1|恒成立”,则称f(x)为完美函数.在下列四个函数中,完美函数是(  )A.f(x)=1xB.f(x)=|x|C.f(x)=2xD.f(x)=x2 展开
 我来答
勤俭又婉丽的小雪花3314
推荐于2016-09-30 · TA获得超过154个赞
知道答主
回答量:187
采纳率:0%
帮助的人:57.4万
展开全部
在区间(1,2)上的任意实数x1,x2(x1≠x2),分别验证下列4个函数.
对于A:f(x)=
1
x
,|f(x2)-f(x1)|=||
1
x1
?
1
x2
|=|
x2?x1
x1x2
|
|<|x2-x1|(∵x1,x2在区间(1,2)上,故x1x2大于1).故成立.
对于B:f(x)=|x|,|f(x2)-f(x1)|=||x2|-|x1||=|x2-x1|(因为故x1和x2大于0)故对于等于号不满足,故不成立.
对于C:f(x)=2x,|f(x2)-f(x1)|=2|x2-x1|<|x2-x1|.不成立.
对于D:f(x)=x2,|f(x2)-f(x1)|=|x22-x12|=(x2+x1)|x2-x1|>|x2-x1|不成立.
故选:A.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式