设集合P={x,1},Q={y,1,2},P?Q,x,y∈{1,2,3,4,5,6,7,8,9},且在直角坐标平面内,从所有满
设集合P={x,1},Q={y,1,2},P?Q,x,y∈{1,2,3,4,5,6,7,8,9},且在直角坐标平面内,从所有满足这些条件的有序实数对(x,y)表示的点中,...
设集合P={x,1},Q={y,1,2},P?Q,x,y∈{1,2,3,4,5,6,7,8,9},且在直角坐标平面内,从所有满足这些条件的有序实数对(x,y)表示的点中,任取一个,其落在圆x2+y2=r2内(不含边界)的概率恰为27,则r2的所有可能的正整数值是______.
展开
1个回答
展开全部
∵集合P={x,1},Q={y,1,2},P?Q,
x,y∈{1,2,3,4,5,6,7,8,9},
∴x=2,y=3,4,5,6,7,8,9
这样在坐标系中共组成7个点,
当x=y时,也满足条件共有7个,
∴所有的事件数是7+7=14
∵点落在圆x2+y2=r2内(不含边界)的概率恰为
,
∴有4个点落在圆内,
(2,3)(2,4)(3,3)(2,5)是落在圆内的点,
∴32>r2>29,
而落在圆内的点不能多于4个,
∴r2=30,31
故答案为:30,31
x,y∈{1,2,3,4,5,6,7,8,9},
∴x=2,y=3,4,5,6,7,8,9
这样在坐标系中共组成7个点,
当x=y时,也满足条件共有7个,
∴所有的事件数是7+7=14
∵点落在圆x2+y2=r2内(不含边界)的概率恰为
2 |
7 |
∴有4个点落在圆内,
(2,3)(2,4)(3,3)(2,5)是落在圆内的点,
∴32>r2>29,
而落在圆内的点不能多于4个,
∴r2=30,31
故答案为:30,31
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询