(2013?资阳)如图,四边形ABCD是平行四边形,过点A、C、D作抛物线y=ax2+bx+c(a≠0),与x轴的另一交点

(2013?资阳)如图,四边形ABCD是平行四边形,过点A、C、D作抛物线y=ax2+bx+c(a≠0),与x轴的另一交点为E,连结CE,点A、B、D的坐标分别为(-2,... (2013?资阳)如图,四边形ABCD是平行四边形,过点A、C、D作抛物线y=ax2+bx+c(a≠0),与x轴的另一交点为E,连结CE,点A、B、D的坐标分别为(-2,0)、(3,0)、(0,4).(1)求抛物线的解析式;(2)已知抛物线的对称轴l交x轴于点F,交线段CD于点K,点M、N分别是直线l和x轴上的动点,连结MN,当线段MN恰好被BC垂直平分时,求点N的坐标;(3)在满足(2)的条件下,过点M作一条直线,使之将四边形AECD的面积分为3:4的两部分,求出该直线的解析式. 展开
 我来答
略德妃2714
推荐于2018-03-22 · TA获得超过143个赞
知道答主
回答量:162
采纳率:0%
帮助的人:53.5万
展开全部
(1)∵点A、B、D的坐标分别为(-2,0)、(3,0)、(0,4),且四边形ABCD是平行四边形,
∴AB=CD=5,
∴点C的坐标为(5,4),
∵过点A、C、D作抛物线y=ax2+bx+c(a≠0),
4a?2b+c=0
25a+5b+c=4
c=4

解得
a=?
2
7
b=
10
7
c=4

故抛物线的解析式为y=-
2
7
x2+
10
7
x+4.

(2)连结BD交对称轴于G,
在Rt△OBD中,易求BD=5,
∴CD=BD,则∠DCB=∠DBC,
又∵∠DCB=∠CBE,
∴∠DBC=∠CBE,
过G作GN⊥BC于H,交x轴于N,
易证GH=HN,
∴点G与点M重合,
故直线BD的解析式y=-
4
3
x+4    
根据抛物线可知对称轴方程为x=
5
2

则点M的坐标为(
5
2
2
3
),即GF=
2
3
,BF=
1
2

∴BM=
FM2+FB2
=
5
6

又∵MN被BC垂直平分,
∴BM=BN=
5
6

∴点N的坐标为(
23
6
,0);

(3)过点M作直线交x轴于点P1,连结CE.
易求四边形AECD的面积为28,四边形ABCD的面积为20,
由“四边形AECD的面积分为3:4”可知直线P1M必与线段CD相交,
设交点为Q1,四边形AP1Q1D的面积为S1,四边形P1ECQ1的面积为S2,点P1的坐标为(a,0),
假设点P在对称轴的左侧,则P1F=
5
2
-a,P1E=7-a,
由△MKQ1∽△MFP1,得
MK
Q1K
=
FM
FP1

易求Q1K=5P1F=5(
5
2
-a),
∴CQ1=
5
2
-5(
5
2
-a)=5a-10,
∴S2=
1
2
(5a-10+7-a)×4=28×
3
7

解得:a=
9
4

根据P1
9
4
,0),M(
5
2
2
3
)可求直线P1M的解析式为y=
8
3
x-6,
若点P在对称轴的右侧,则直线P2M的解析式为y=-
8
3
x+
22
3
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式