如图:在△ABC中,∠A=α,△ABC的内角或外角平分线交于点P,且∠P=β,试探求图1,2,3中α与β的关系,

如图:在△ABC中,∠A=α,△ABC的内角或外角平分线交于点P,且∠P=β,试探求图1,2,3中α与β的关系,并选择你认为最有把握又最喜欢的一个加以说明.... 如图:在△ABC中,∠A=α,△ABC的内角或外角平分线交于点P,且∠P=β,试探求图1,2,3中α与β的关系,并选择你认为最有把握又最喜欢的一个加以说明. 展开
 我来答
黎约荣耀fq
推荐于2016-04-29 · TA获得超过108个赞
知道答主
回答量:102
采纳率:0%
帮助的人:107万
展开全部
(1)β=90°+
1
2
α;(2)β=
1
2
α;(3)β=90°-
1
2
α.
下面选择(1)进行证明.
在图(1)中,根据三角形内角和定理可得:∠ABC+∠ACB=180°-∠A.
∵BP与CP是△ABC的角平分线,
∴∠PBC=
1
2
∠ABC,∠PCB=
1
2
∠ACB,
∴∠PBC+∠PCB=
1
2
(∠ABC+∠ACB)=90°-
1
2
α.
在△PBC中,∠BPC=180°-(∠PCB+∠PCB)=180°-(90°-
1
2
α)=90°+
1
2
α.
∴β=90°+
1
2
α.解:图(2),结论:∠BPC=
1
2
∠A.
证明如下:
∠P=∠1-∠2=
1
2
(∠ACD-∠ABC)=
1
2
∠A.
∴β=
1
2
α;
(3)∵BP、CP分别是△ABC两个外角∠CBD和∠BCE的平分线,
∴∠CBP=
1
2
(∠A+∠ACB),∠BCP=
1
2
(∠A+∠ABC),
∴∠BPC=180°-∠CBP-∠BCP=180°-∠A-
1
2
(∠ABC+∠ACB),
∴∠P与∠A的关系是:∠P=180°-∠A-
1
2
(∠ABC+∠ACB)=90°-
1
2
α,
即β=90°-
1
2
α.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式