已知数列{an}中,前n项和为Sn,a1=5,并且Sn+1=Sn+2an+2n+2(n∈N*),(1)求a2,a3的值;(2)设bn=an+
已知数列{an}中,前n项和为Sn,a1=5,并且Sn+1=Sn+2an+2n+2(n∈N*),(1)求a2,a3的值;(2)设bn=an+λ2n,若实数λ使得数列{bn...
已知数列{an}中,前n项和为Sn,a1=5,并且Sn+1=Sn+2an+2n+2(n∈N*),(1)求a2,a3的值;(2)设bn=an+λ2n,若实数λ使得数列{bn}为等差数列,求λ的值;(3)不等式an<(t?n+12n?5)?3n对任何的n∈N*恒成立,求t的范围.
展开
(1)∵S
n+1=S
n+2a
n+2
n+2(n∈N
*),
∴S
n+1-S
n=2a
n+2
n+2(n∈N
*),
即a
n+1=2a
n+2
n+2(n∈N
*),
又∵S
n=2a
n+2
n+2(n∈N
*),
∴a
2=2a
1+2
3=10+8=18,
a
3=2a
2+2
4=36+16=52
(2)∵b
n=
,
∴b
1=
=
,
b
2=
=
,
b
3=
=
,
∵数列{b
n}为等差数列
∴2b
2=b
1+b
3=2×
=
+
解得λ=0
(3)由(2)得b
n=
,
∴b
1=
,
b
2=
∴d=b
2-b
1=2,
即数列{b
n}是公差d=2,首项为b
1=
的等差数列
∴b
n=
=
+2(n-1)=
∴a
n=2
n-1?(4n+1)
若
an<(t?)?3n对任何的n∈N
*恒
收起
为你推荐: