已知函数f(x)=(1+cotx)sin 2 x+msin(x+ π 4 )sin(x- π 4 ).(1)当m=0
已知函数f(x)=(1+cotx)sin2x+msin(x+π4)sin(x-π4).(1)当m=0时,求f(x)在区间[π8,3π4]上的取值范围;(2)当tana=2...
已知函数f(x)=(1+cotx)sin 2 x+msin(x+ π 4 )sin(x- π 4 ).(1)当m=0时,求f(x)在区间 [ π 8 , 3π 4 ] 上的取值范围;(2)当tana=2时, f(a)= 3 5 ,求m的值.
展开
(1)当m=0时, f(x)=(1+ )si n 2 x=si n 2 x+sinxcosx= = [ sin(2x- )+1] , 由已知 x∈[ , ] ,得 2x- ∈[- ,1] ,从而得:f(x)的值域为 [0, ] .
(2)因为 f(x)=(1+ )si n 2 x+msin(x+ )sin(x- ) =sin 2 x+sinxcosx+ = + - = [sin2x-(1+m)cos2x]+ 所以 f(α)= [sin2α-(1+m)cos2α]+ = ① 当tanα=2,得: sin2a= 2sinacosa | sin 2 a+ cos 2 a | = = , cos2a=- , 代入①式,解得m=-2. |
收起
为你推荐: