已知等差数列{an}的首项为2,公差为1,符号[x]表示不超过实数x的最大整数,记bn=[log3(an-1)],Sn为数
已知等差数列{an}的首项为2,公差为1,符号[x]表示不超过实数x的最大整数,记bn=[log3(an-1)],Sn为数列{bn}的前n项和.(Ⅰ)求数列{an}的通项...
已知等差数列{an}的首项为2,公差为1,符号[x]表示不超过实数x的最大整数,记bn=[log3(an-1)],Sn为数列{bn}的前n项和.(Ⅰ)求数列{an}的通项公式;(Ⅱ)求S3n.
展开
1个回答
展开全部
(Ⅰ)因为等差数列{an}的首项为2,公差为1,
所以an=2+(n-1)×1=n+1,
(Ⅱ)由(Ⅰ)得,bn=[log3(an-1)]=[log3n],
当3k≤n<3k+1时,[log3n]=k,k∈N,
所以S3n=[log31]+[log32]+[log33]+[log34]]+…+[[log38]+]+[log39]+[log310]+…+[log33n]
=0+0+1×6+2×18+3×54+…+(n-1)×2?3n-1+n
=0+0+1×2×3+2×2×32+3×2×33+…+(n-1)×2?3n-1+n,
设s=1×2×3+2×2×32+3×2×33+…+(n-1)×2?3n-1,①
3s=1×2×32+2×2×33+3×2×34+…+(n-1)×2?3n,②
①-②得,-2s=6+2(32+33+34+…+3n-1)-(n-1)×2?3n
=6+2×
-(n-1)×2?3n=-3+(-2n+3)?3n
则s=
[3+(2n?3)?3n],
所以S3n=
[3+(2n?3)?3n]+n.
所以an=2+(n-1)×1=n+1,
(Ⅱ)由(Ⅰ)得,bn=[log3(an-1)]=[log3n],
当3k≤n<3k+1时,[log3n]=k,k∈N,
所以S3n=[log31]+[log32]+[log33]+[log34]]+…+[[log38]+]+[log39]+[log310]+…+[log33n]
=0+0+1×6+2×18+3×54+…+(n-1)×2?3n-1+n
=0+0+1×2×3+2×2×32+3×2×33+…+(n-1)×2?3n-1+n,
设s=1×2×3+2×2×32+3×2×33+…+(n-1)×2?3n-1,①
3s=1×2×32+2×2×33+3×2×34+…+(n-1)×2?3n,②
①-②得,-2s=6+2(32+33+34+…+3n-1)-(n-1)×2?3n
=6+2×
9(1?3n?2) |
1?3 |
则s=
1 |
2 |
所以S3n=
1 |
2 |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询