设函数f(x)在x=x0处二阶导数存在,且f"(x0)<0,f'(x0)=0,则必存在δ>0

设函数f(x)在x=x0处二阶导数存在,且f"(x0)<0,f'(x0)=0,则必存在δ>0,使得A.曲线y=f(x)在区间(x0-δ,x0+δ)上是凸的。B.曲线y=f... 设函数f(x)在x=x0处二阶导数存在,且f"(x0)<0,f'(x0)=0,则必存在δ>0,使得
A.曲线y=f(x)在区间(x0-δ,x0+δ)上是凸的。
B.曲线y=f(x)在区间(x0-δ,x0+δ)上是凹的。
C.曲线y=f(x)在区间(x0-δ,x0]是严格单调增,在区间[x0,x0+δ)是严格单调减
D.曲线y=f(x)在区间(x0-δ,x0]是严格单调减,在区间[x0,x0+δ)是严格单调增

答案选C
为什么A错误???
展开
 我来答
mulunhong0
2015-11-04
知道答主
回答量:9
采纳率:0%
帮助的人:9769
展开全部
计划外高i附还侮辱
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
高中数学
推荐于2016-12-02 · 专注高中数学知识的传播
高中数学
采纳数:2741 获赞数:10685

向TA提问 私信TA
展开全部
因为f''(x0)<0,则在x0的邻域内f'(x)单调减。
又f'(x0)=0
所在在x0的左邻域内f'(x)>0,在x0的右邻域内f'(x)<0
所以f(x)在x0的左邻域内单调增,在x0的右邻域内单调减。
所以答案为C。
答案A没看出来呀!
追问
f''(x)小于0 不是凸函数吗
追答
那是对整个函数或函数的某个区间来说,对于一点x0,不知还满足不满足呀。你可以对照一个课本上的定义呀。
本回答被提问者和网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式