矩阵的初等变换改变行列式的值吗
不一定,第一类初等变换(换行换列)使行列式变号,第二类初等变换(某行或某列乘k倍)使行列式变k倍,第三类初等变换(某行(列)乘k倍加到另一行(列))使行列式不变。
初等矩阵是指由单大悄位矩阵经过一次初等变换得到的矩阵。初等矩阵的模样可以写一个3阶或者4阶的单位矩阵。首先:初等矩阵都可逆,其次,初等矩阵的逆矩阵其实是一个同类型的初等矩阵(可看作逆变换)。
例如,交换矩阵中某两行(列)的位置;用一个非零常数k乘以矩阵的某一行(列);将矩阵的某一行(列)乘以常数k后加到另一行(列)上去。若某初等矩阵左乘矩阵A,则初等矩阵会将原先施加到单位矩阵E上的变换,按照同种形式施加到矩阵A之上。
或者说,想对矩阵A做变换,但是不是直接对矩阵A去做处理,而是通过一种间接方式去实现。
扩展资料:
1、在解线性方程组中的应用
初等行变换不影响线性方程组的解,也可用于高斯消元法,用于逐渐将系滚孝渣数矩阵化为标准形。初等行变换不改变矩阵的核(故不改变解集),但改变了矩阵的像。反过来,初等列变换没有改变像却改变了核。
2、用于求解一个矩阵的逆矩阵
有的时候,当矩阵的阶数比较高的时候,使用其行列式的值和伴随矩阵求解其逆矩阵会产生较大的计算量。这时,通常使用将原矩阵和相同行数(也等于列数)的单位矩阵并排,再使用初等变换的方法将这个并排矩慎伏阵的左边化为单位矩阵,这时,右边的矩阵即为原矩阵的逆矩阵。
参考资料来源:百度百科-初等矩阵
2024-08-07 广告
2019-07-23
其次和誉 行列式的本质的备兆数字 而矩阵是没有数值的 它的本质是数的集唤滚段合