如何用神经网络遗传算法求极值? 10
1个回答
展开全部
===============学习神经网络可以到<神经网络之家>================
可以先用matlab神经网络工具箱训练网络,当网络训练好之后,把网络存起来.
然后编写遗传算法,你知道,遗传算法是每代不断迭代的,然后每代会根据适应度决定是否进入下一代,这里的适应度你就用sim(net,x)得到的值的倒数(或者类似的)作为适应度,然后其它就和遗传算法没什么两样了.最后得到的最优解, 就是网络的最优解. 也就是你要的结果了.
不过兄弟,这想法很牛B,很值得鼓励这样的想法.但我不得不说两句,从实际角度来说,这样的实现没有太大的意义. 你的目的就是想从数据中找到Y最小的时候,X的什么值, 但数据上毕竟只是数据,不管你怎么绕,透露出来的信息还是有限的,不管怎么绕,其实数据能提供最大限度的信息就是:在Y=10.88时,即X1=25,X2=24....X6=1.5时,Y是最小值的, 这是数据能提供的最大限度的信息,你再怎么绕, 其实当你懂得神经网络的深层原理时,你会发现,你的方案并没能挖掘出更优的解(因为数据的信息是有限的),这只是把自己绕晕了
不过能有这样的想法,兄弟肯定是个学习的好材料,加油.
===============学习神经网络可以到<神经网络之家>================
可以先用matlab神经网络工具箱训练网络,当网络训练好之后,把网络存起来.
然后编写遗传算法,你知道,遗传算法是每代不断迭代的,然后每代会根据适应度决定是否进入下一代,这里的适应度你就用sim(net,x)得到的值的倒数(或者类似的)作为适应度,然后其它就和遗传算法没什么两样了.最后得到的最优解, 就是网络的最优解. 也就是你要的结果了.
不过兄弟,这想法很牛B,很值得鼓励这样的想法.但我不得不说两句,从实际角度来说,这样的实现没有太大的意义. 你的目的就是想从数据中找到Y最小的时候,X的什么值, 但数据上毕竟只是数据,不管你怎么绕,透露出来的信息还是有限的,不管怎么绕,其实数据能提供最大限度的信息就是:在Y=10.88时,即X1=25,X2=24....X6=1.5时,Y是最小值的, 这是数据能提供的最大限度的信息,你再怎么绕, 其实当你懂得神经网络的深层原理时,你会发现,你的方案并没能挖掘出更优的解(因为数据的信息是有限的),这只是把自己绕晕了
不过能有这样的想法,兄弟肯定是个学习的好材料,加油.
===============学习神经网络可以到<神经网络之家>================
追问
只是用来写论文,绕一下而已,我也知道没有太大的实际意义,只是代码不会编写,还是恳请高手帮忙!
追答
要求代码的话在百度知道里估计不大可能,
谁会花那么多心思去写一篇这么复杂的代码来回答一个知道呢?
去淘宝找一些论文代做吧。
富港检测东莞有限公司
2024-12-25 广告
2024-12-25 广告
ISTA3L是一个基于研究、数据驱动的测试协议,它模拟了由零售公司完成的产品订单被直接运送给消费者时所经历的危险,它允许用户评估包装产品的能力,以承受运输和处理包装产品时所经历的供应链危险,从接收到任何电子商务零售商履行操作,直到最终消费者...
点击进入详情页
本回答由富港检测东莞有限公司提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询