神经网络遗传算法函数极值寻优

 我来答
科创17
2022-07-08 · TA获得超过5930个赞
知道小有建树答主
回答量:2846
采纳率:100%
帮助的人:178万
展开全部

对于未知的非线性函数,仅通过函数的输入输出数据难以准确寻找函数极值。这类问题可以通过神经网络结合遗传算法求解,利用神经网络的非线性拟合能力和遗传算法的非线性寻优能力寻找函数极值。本文用神经网络遗传算法寻优如下非线性函数极值,函数表达式

函数图形如下图1所示。

从函数方程和图形可以看出,该函数的全局最小值为0,对应的坐标为(0,0)。虽然从函数方程和图形中很容易找出函数极值及极值对应坐标,但是在函数方程未知的情况下函数极值及极值对应坐标就很难找到。

神经网络遗传算法函数极值寻优主要分为BP神经网络训练拟合和遗传算法极值寻优两步,算法流程如下图2所示。

神经网络训练拟合根据寻优函数的特点构建合适的BP神经网络,用非线性函数的输出数据训练BP网络,训练后的BP神经网络就可以预测函数输出。遗传算法极值寻优把训练后的BP神经网络预测结果作为个体适应度值,通过选择、交叉和变异操作寻找函数的全局最优值及对应输入值。
本文根据非线性函数有2个输入参数、1个输出参数,确定BP神经网络结构为2-5-1.取函数的4 000组输入输出数据,从中随机选取3 900组数据训练网络,100组数据测试网络性能,网络训练好后用于预测非线性函数输出。
遗传算法中个体采用实数编码,由于寻优函数只有2个输入参数,所以个体长度为2。个体适应度值为BP神经网络预测值,适应度值越小。交叉概率为0.4,变异概率为0.2。

用函数输入输出数据训练BP神经网络,使训练后的网络能够拟合非线性函数输出,保存训练好的网络用语计算个体适应度值。根据非线性函数方程随机得到该函数的4 000组输入输出数据,存储于data.mat中,其中input为函数输入数据,output为函数对应输出数据,从中随机抽取3 900组训练数据训练网络,100组测试数据测试网络拟合性能。最后保存训练好的网络。

把训练好的BP神经网络预测输出作为个体适应度值。

BP神经网络拟合结果分析
本文中个体的适应度值为BP神经网络预测值,因此BP神经网络预测精度对于最优位置的寻找具有非常重要的意义。由于寻优非线性函数有2个输入参数、1个输出参数,所以构建的BP神经网络的结构为2-5-1。共取非线性函数4 000组输入输出数据,从中随机选择3 900组数据训练BP神经网络,100组数据作为测试数据测试BP神经网络拟合性能,BP神经网络预测输出和期望输出对比如下图3所示。

从BP神经网络预测结果可以看出,BP神经网络可以准确预测非线性函数输出,可以把网络预测近似看成函数实际输出。

遗传算法寻优结果分析 BP神经网络训练结束后,可以利用遗传算法寻找该非线性函数的最小值。遗传算法的迭代次数是100次,种群规模是20,交叉概率为0.4,变异概率为0.2,采用浮点数编码,个体长度为21,优化过程中最优个体适应度值变化曲线如下图4所示。

本文所使用的方法有比较重要的工程应用价值,比如对于某项试验来说,试验目的是获取到最大试验结果对应的实验条件,但是由于时间和经费限制,该试验只能进行有限次,可能单靠试验结果找不到最优的试验条件。这时可以在已知试验数据的基础上,通过本文介绍的神经网络遗传算法寻找最优试验条件。
思路就是先根据试验条件数和试验结果数确定BP神经网络结构;然后把试验条件作为输入数据,试验结果作为输出数据训练BP网络,使得训练后的网络可以预测一定试验条件下的试验结果;最后把试验条件作为遗传算法中的种群个体,把网络预测的试验结果作为个体适应度值,通过遗传算法推导最优试验结果及其对应试验条件。

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式