1个回答
展开全部
辅助定理--费马引理:
函数f(x)在x0的某临域内有定义,且在点x0处函数有导数,如果对于所有的f(x)>(<)=f(x0),那么,f(x)在点x0处的导数为0;
罗尔定理:
函数f(x)满足:
1、在[a,b]上连续
2、在(a,b)上可导
3、f(a)=f(b)
那么,在x属于(a,b)的范围内,必有点δ满足导数为0.
拉格朗日定理:
函数f(x)满足 :
1、在闭区间【a,b】上连续
2、在开区间(a,b)上可导
那么,在x属于(a,b)的的范围内,有f(b)--f(a)=(b-a)X(函数f(x)在δ点的导数)
柯西中值定理:
函数f(x)、g(x)满足
1、在【a,b】上连续
2、在(a,b)上可导
3、对任意x属于(a,b),g(x)的导数!=0
那么,存在点δ属于(a,b),满足f(b)-f(a)/g(b)-g(a)=f'(δ)/g'(δ).
微积分公式这里不好输入,你还是从参考书或课本上找吧。。。
函数f(x)在x0的某临域内有定义,且在点x0处函数有导数,如果对于所有的f(x)>(<)=f(x0),那么,f(x)在点x0处的导数为0;
罗尔定理:
函数f(x)满足:
1、在[a,b]上连续
2、在(a,b)上可导
3、f(a)=f(b)
那么,在x属于(a,b)的范围内,必有点δ满足导数为0.
拉格朗日定理:
函数f(x)满足 :
1、在闭区间【a,b】上连续
2、在开区间(a,b)上可导
那么,在x属于(a,b)的的范围内,有f(b)--f(a)=(b-a)X(函数f(x)在δ点的导数)
柯西中值定理:
函数f(x)、g(x)满足
1、在【a,b】上连续
2、在(a,b)上可导
3、对任意x属于(a,b),g(x)的导数!=0
那么,存在点δ属于(a,b),满足f(b)-f(a)/g(b)-g(a)=f'(δ)/g'(δ).
微积分公式这里不好输入,你还是从参考书或课本上找吧。。。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询